Computational morphology. Day 3. Real-world morphology.

Alexey Sorokin ${ }^{1,2}$

${ }^{1}$ Moscow State University, ${ }^{2}$ Moscow Institute of Science and Technology
European Summer School
in Logic, Language and Information, Toulouse, 24-28 July, 2017

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Day 3 outline

- Real-world linguistic phenomena in FOMA.

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples

Day 3 outline

- Real-world linguistic phenomena in FOMA.
- Morphological tagging: problem setting.

Day 3 outline

- Real-world linguistic phenomena in FOMA.
- Morphological tagging: problem setting.
- N-gram language models.

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples

Two-level morphology

- Finite-state morphology deals well with concatenative morphology.
- Ideally: agglutinative languages (Turkish, Finnish, etc.).

Two-level morphology

- Finite-state morphology deals well with concatenative morphology.
- Ideally: agglutinative languages (Turkish, Finnish, etc.).
- General two-level scheme:
- Create the slots for prototypical morphemes.

Two-level morphology

- Finite-state morphology deals well with concatenative morphology.
- Ideally: agglutinative languages (Turkish, Finnish, etc.).
- General two-level scheme:
- Create the slots for prototypical morphemes.
- Fill these slots with appropriate morphemes according to morphotactics and phonology.

Two-level morphology

- Finite-state morphology deals well with concatenative morphology.
- Ideally: agglutinative languages (Turkish, Finnish, etc.).
- General two-level scheme:
- Create the slots for prototypical morphemes.
- Fill these slots with appropriate morphemes according to morphotactics and phonology.
- Case study: Turkish verb inflection.

Two-level morphology

- Finite-state morphology deals well with concatenative morphology.
- Ideally: agglutinative languages (Turkish, Finnish, etc.).
- General two-level scheme:
- Create the slots for prototypical morphemes.
- Fill these slots with appropriate morphemes according to morphotactics and phonology.
- Case study: Turkish verb inflection.
- Categories to model:
- Voice: passive, active.
- Tense: aorist, continuous.

Two-level morphology

- Finite-state morphology deals well with concatenative morphology.
- Ideally: agglutinative languages (Turkish, Finnish, etc.).
- General two-level scheme:
- Create the slots for prototypical morphemes.
- Fill these slots with appropriate morphemes according to morphotactics and phonology.
- Case study: Turkish verb inflection.
- Categories to model:
- Voice: passive, active.
- Tense: aorist, continuous.
- Number: singular, plural.

Two-level morphology

- Finite-state morphology deals well with concatenative morphology.
- Ideally: agglutinative languages (Turkish, Finnish, etc.).
- General two-level scheme:
- Create the slots for prototypical morphemes.
- Fill these slots with appropriate morphemes according to morphotactics and phonology.
- Case study: Turkish verb inflection.
- Categories to model:
- Voice: passive, active.
- Tense: aorist, continuous.
- Number: singular, plural.
- Person: 1, 2, 3 .

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs
Turkish verb conjugation

- Input format: infinitive+Voice+Tense+Person+Number.

Turkish verb conjugation

- Input format: infinitive+Voice+Tense+Person+Number.
- +Voice: +Pass/+Act.
- +Tense: +Aor/+Cont.
- +Person: $+1 /+2 /+3$.
- +Number: $+\mathrm{Sg} /+\mathrm{Pl}$.

Turkish verb conjugation

- Input format: infinitive+Voice+Tense+Person+Number.
- +Voice: +Pass/+Act.
- +Tense: +Aor/+Cont.
- +Person: $+1 /+2 /+3$.
- +Number: $+\mathrm{Sg} /+\mathrm{PI}$.
- Verb form structure:

$$
\langle\text { stem }\rangle\langle\text { VoiceSuf }\rangle\langle\text { Tense }\rangle\langle\text { PersNumSuf }\rangle
$$

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs
Turkish verb conjugation

- Verb form structure: \langle stem $\rangle\langle$ VoiceSuf $\rangle\langle$ Tense $\rangle\langle$ PersNumSuf \rangle.

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs
Turkish verb conjugation

- Verb form structure: \langle stem $\rangle\langle$ VoiceSuf $\rangle\langle$ Tense $\rangle\langle$ PersNumSuf \rangle.
- Passive voice suffix: -n after vowels, -In after I, -Il otherwise.

Computational morphology. Day 3. Real-world morphology. Finite-state morphology: real-world examples

Turkish verb conjugation

- Verb form structure: \langle stem $\rangle\langle$ VoiceSuf $\rangle\langle$ Tense $\rangle\langle$ PersNumSuf \rangle.
- Passive voice suffix: -n after vowels, -In after I, -Il otherwise.
- Aorist suffix:
- $-r$ after vowels.
- -Ir after consonants in polysyllabic stems.
- -Ar after consonants in monosyllabic stems.
- -Ir after 13 monosyllabic exceptions.

Turkish verb conjugation

- Verb form structure: \langle stem $\rangle\langle$ VoiceSuf $\rangle\langle$ Tense $\rangle\langle$ PersNumSuf \rangle.
- Passive voice suffix: -n after vowels, -In after I, -II otherwise.
- Aorist suffix:
- $-r$ after vowels.
- -Ir after consonants in polysyllabic stems.
- -Ar after consonants in monosyllabic stems.
- -Ir after 13 monosyllabic exceptions.
- Progressive suffix:
- -Iyor after consonants.
- -yor after u, ü, i, ı.
- -Iyor after vowels, the vowel is removed.
- -iyor after roots de-/ye-, the vowel is removed.

Turkish verb conjugation

- Verb form structure: \langle stem $\rangle\langle$ VoiceSuf $\rangle\langle$ Tense $\rangle\langle$ PersNumSuf \rangle.
- Passive voice suffix: -n after vowels, -In after I, -II otherwise.
- Aorist suffix:
- $-r$ after vowels.
- -Ir after consonants in polysyllabic stems.
- -Ar after consonants in monosyllabic stems.
- -Ir after 13 monosyllabic exceptions.
- Progressive suffix:
- -Iyor after consonants.
- -yor after u, ü, i, ı.
- -Iyor after vowels, the vowel is removed.
- -iyor after roots de-/ye-, the vowel is removed.
- Verb ending (\langle PersNumSuf \rangle):

Number	Person	1	2
	3		
Singular	$-\operatorname{Im}$	$-s \ln$	$-\varnothing$
Plural	-Iz	$-\operatorname{sln} \mathrm{lz}$	-IAr

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

```
1 step: defining slots
define Voice "+Act" | "+Pass" ;
define Tense "+Aor" | "+Prog";
define Number "+Sg" | "+PI" ;
define Person "+1" | "+2" | "+3" ;
define Input Infinitive Voice Tense Person Number;
\# deleting -mAk and defining slots
define MarkerInsertion [..] -> "!" || _m [a | e] k Voice ;
define InfinitiveDeletion m [a|e]k \(->\) "" || "!"
define TensePattern [ [..] -> "!AorSuffix!" || "!" - ?+ "+Aor" ] .o. [ [..] -> "!ProgSuffix!"
    || "!" _ ?+ "+Prog" ];
define PassivePattern [..] -> "!PassSuffix!" || "!" _ ?+ "+Pass" ;
define Cleanup [ Voice | Tense | "!" ] -> "" ;
```

\$ flookup -i -w "" turkish_diacr.bin < test.in	
okumak+Pass+Prog+1+Pl	oku!PassSuffix!!ProgSuffix!+1+Pl
gelmek+Pass+Aor+2+Sg	gel!PassSuffix!!AorSuffix!+2+Sg
uyumak+Act+Prog+3+Pl	uyu!ProgSuffix!+3+Pl
izlemek+Act+Prog+3+Pl	izle!ProgSuffix!+3+Pl
bilmek+Act+Aor+2+Pl	bil!AorSuffix!+2+Pl
görmek+Act+Aor+2+Pl	gör!AorSuffix!+2+Pl

Turkish verb conjugation

```
2 step: filling voice
## passive suffix filling
define Passive1 "!PassSuffix!" -> II|[ Consonant - I ] _ ;
define Passive2 "!PassSuffix!" -> | n || I
define Passive3 "!PassSuffix!" -> n || Vowel
define PassiveSuffix Passive1 .o. Passive2 .o. Passive3;
```

\$ flookup -i -w "" turkish_diacr.bin < test.in	
okumak+Pass+Prog+1+Pl	okun!ProgSuffix!+1+Pl
gelmek+Pass+Aor+2+Sg	gelIn!AorSuffix!+2+Sg
uyumak+Act+Prog+3+Pl	uyu!ProgSuffix!+3+Pl
izlemek+Act+Prog+3+Pl	izle!ProgSuffix!+3+Pl
bilmek+Act+Aor+2+Pl	bil!AorSuffix!+2+Pl
görmek+Act+Aor+2+Pl	gör!AorSuffix!+2+Pl

Turkish verb conjugation

3 step: filling aorist

```
## aorist suffix filling
define PseudoVowel Vowel|||A;
read lexc aor exception.lexc
define AorException;
define Monosyllable Consonant* Vowel Consonant* ;
define AorSuffix0 "!AorSuffix!" -> I r || .#. AorException
```

\qquad

```
define AorSuffix1 "!AorSuffix!" -> r || PseudoVowel
define AorSuffix2 "!AorSuffix!" -> A r || .#. Monosyllable
```

\qquad

```
define AorSuffix3 "!AorSuffix!" -> I r || _;
define AorSuffix AorSuffix0 .o. AorSuffix1 .o. AorSuffix2 .o. AorSuffix3;
```

\$ flookup -i -w "" turkish_diacr.bin < test.in
okumak+Pass+Prog+1+Pl okun!ProgSuffix!+1+Pl
gelmek+Pass+Aor+2+Sg gelInIr+2+Sg
uyumak+Act+Prog+3+Pl
uyu!ProgSuffix!+3+Pl
izlemek+Act+Prog+3+Pl
izle! ProgSuffix!+3+Pl
bilmek+Act+Aor+2+Pl billr+2+Pl
görmek+Act+Aor+2+Pl görAr+2+Pl

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

4 step: filling progressive

```
## progressive suffix filling
define ProgSuffix0 "!ProgSuffix!" -> "!" I y o r || _
## after i, ı, u, ü
define ProgSuffixVowel0 "!" I -> "" || [u | ü| i| |]_ ;
## other vowels
define ProgSuffixVowel1 [ a | o | e | ö] "!" -> "" || _ ;
## demek, yemek
define ProgDemek e "!" I -> i || .#. [ d | y ] _ ;
## sonorization
define ProgSonor t >> d ||.#. [g i|e|t a ]_ "!" ;
define ProgCleanup "!" -> "" || ;
define ProgSuffix ProgSuffix0 .o. ProgSuffixVowel0 .o. ProgSuffixVowel1 .o. ProgDemek
    o. ProgSonor .o. ProgCleanup ;
```

\$ flookup -i -w "" turkish_diacr.bin < test.in
okumak+Pass+Prog+1+Pl okunIyor+1+Pl
gelmek + Pass + Aor $+2+$ Sg gelInIr $+2+$ Sg
uyumak+Act+Prog+3+Pl uyuyor $+3+\mathrm{Pl}$
izlemek+Act+Prog+3+Pl izllyor+3+Pl
bilmek+Act+Aor+2+Pl bilIr+2+Pl
görmek+Act+Aor+2+Pl görAr+2+Pl

Turkish verb conjugation

```
5 step: verbal endings
\#\# ending filling
define Ending1s "+1" "+Sg" -> | m ||
define Ending2s " +2 " " + Sg" \(->\) s I n ||
define Ending3s "+3" "+Sg" -> "" ||
define Ending1p "+1" "+PI" -> | z || _ ;
define Ending2p "+2" "+PI" \(->\) s | n | z ||
define Ending3p "+3" "+PI" \(->\) I A r ||
define Ending Ending1s .o. Ending2s .o. Ending3s .o. Ending1p .o. Ending2p .o.
    Ending3p ;
```

```
$ flookup -i -w "" turkish_diacr.bin < test.in
okumak+Pass+Prog+1+Pl okunIyorIz
gelmek+Pass+Aor+2+Sg gelInIrsIn
uyumak+Act+Prog+3+Pl uyuyorlAr
izlemek+Act+Prog+3+Pl izllyorlAr
bilmek+Act+Aor+2+Pl bilIrsInIz
görmek+Act+Aor+2+Pl görArsInIz
```


Turkish verb conjugation

6 step: vowel harmony

```
## Vowel Harmony (left context on output size)
define VowelHarmony [A -> a // LastVowelHard
                        I -> I// LastVowelHardStraight _ ,, I -> i //
        A -> e // LastVowelSoft
```

\qquad

``` ,,
LastVowelSoftStraight
``` \(\qquad\)
``` ,' I \(\rightarrow>\) u // LastVowelHardRound _ ,, I \(->\) ü// LastVowelSoftRound _] ;
define Fill PassiveSuffix .o. AorSuffix .o. ProgSuffix .o. Ending .o. VowelHarmony ; define Grammar Input .o. Pattern .o. Fill ;
```

\$ flookup -i -w "" turkish_diacr.bin < test.in okumak+Pass+Prog+1+Pl okunuyoruz
gelmek+Pass+Aor+2+Sg gelinirsin
uyumak+Act+Prog+3+Pl uyuyorlar
izlemek+Act+Prog+3+Pl izliyorlar
bilmek+Act+Aor+2+Pl bilirsiniz
görmek+Act+Aor+2+P1 görersiniz

General model

- Spanish verb conjugation is rather simple:

Number	Person	-ar (tomar)	-er (comer)	-ir (escribir)
Singular	1	tomo	como	escribo
	2	tomas	comes	escribes
	3	toma	come	escribe
Plural	1	tomamos	comemos	escribimos
	2	tomáis	coméis	escribís
	3	toman	comen	escriben

General model

- Spanish verb conjugation is rather simple:

Number	Person	-ar (tomar)	-er (comer)	-ir (escribir)
Singular	1	tomo	como	escribo
	2	tomas	comes	escribes
	3	toma	come	escribe
Plural	1	tomamos	comemos	escribimos
	2	tomáis	coméis	escribís
	3	toman	comen	escriben

- There are several morphonetic alterations:
- In $+1+\operatorname{Sg} g$ becomes j before -er: emerger \rightarrow emerjo.

General model

- Spanish verb conjugation is rather simple:

Number	Person	-ar (tomar)	-er (comer)	-ir (escribir)
Singular	1	tomo	como	escribo
	2	tomas	comes	escribes
	3	toma	come	escribe
Plural	1	tomamos	comemos	escribimos
	2	tomáis	coméis	escribís
	3	toman	comen	escriben

- There are several morphonetic alterations:
- In $+1+\operatorname{Sg} g$ becomes j before -er: emerger \rightarrow emerjo.
- In $+1+\operatorname{Sg} c$ turns to $z c$ before -er/-ir and after vowel: conducir \rightarrow conduzco, agradecer \rightarrow agradezco (though mecer \rightarrow mezo).

Model alterations

- Spanish verb conjugation is rather simple.
- But model vowel alterations exist:

Number	Person	$-o-/-u e-$ contar	-e-/-ie- sentir	$-e-/-i-$ servir
Singular	2	cuento	siento	sirvo
	3	cuentas	sientes	sirves
	1	contamos	sentimos	sirve
	2	contáis	sentís	servís
	3	cuentan	sienten	sirven

Spanish verb: present tense

Model alterations

- Spanish verb conjugation is rather simple.
- But model vowel alterations exist:

Number	Person	$-o-/-u e-$ contar	-e-/-ie- sentir	$-e-/-i-$ servir
Singular	2	cuento	siento	sirvo
	3	cuentas	sientes	sirves
	1	contamos	sentimos	sirve
	2	contáis	sentís	servís
	3	cuentan	sienten	sirven

- These classes include much more verbs:
- -o-/-ue-: morir, dormir, soler, soñar, ...
- -e-/-ie-: pensar, entender, perder, preferir, ...

Spanish verb: present tense

Model alterations

- Spanish verb conjugation is rather simple.
- But model vowel alterations exist:

Number	Person	$-o-/-u e-$ contar	$-e-/-i e-$ sentir	$-e-/-i-$ servir
Singular	1	cuento	siento	sirvo
	3	cuentas	sientes	sirves
	siente	sirve		
Plural	1	contamos	sentimos	servimos
	2	contáis	sentís	servís suentan
	sirven			

- These classes include much more verbs:
- -o-/-ue-: morir, dormir, soler, soñar, ...
- -e-/-ie-: pensar, entender, perder, preferir, ...
- -e-/-i-: pedir, vestir, elegir, expedir, ...

Model alterations

- Also Spanish has some irregular verbs:

Number	Person	estar	ser	haber
Singular	1	estoy	soy	he
	2	estás	eres	has
	3	está	es	ha
Plural	1	estamos	somos	hemos
	2	estáis	sois	habéis
	3	están	son	han

Model alterations

- Also Spanish has some irregular verbs:

Number	Person	estar	ser	haber
Singular	1	estoy	soy	he
	2	estás	eres	has
	3	está	es	ha
Plural	1	estamos	somos	hemos
	2	estáis	sois	habéis
	3	están	son	han

- There are some more irregular verbs: decir, dar, ver, ...
- Some verbs just have irregular $+1+\mathrm{Sg}$ forms:
- traer \rightarrow traigo (also caer).
- valer \rightarrow valgo (also salir, poner).
- saber \rightarrow sé, caber \rightarrow quepo.

Model alterations

- Also Spanish has some irregular verbs:

Number	Person	estar	ser	haber
Singular	1	estoy	soy	he
	2	estás	eres	has
	3	está	es	ha
Plural	1	estamos	somos	hemos
	2	estáis	sois	habéis
	3	están	son	han

- There are some more irregular verbs: decir, dar, ver, ...
- Some verbs just have irregular $+1+\mathrm{Sg}$ forms:
- traer \rightarrow traigo (also caer).
- valer \rightarrow valgo (also salir, poner).
- saber \rightarrow sé, caber \rightarrow quepo.
- How to model that all properly?

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Regular model

First, model regular verbs (with regular phonetic alterations):

```
define Vowel e |i |é| i| a | u | o |á| ú| ó;
```



```
define Letter Cons | Vowel:
define Stem Letter* Vowel Letter* ;
define InfSuffix [a|i|e]r
define Infinitive Stem InfSuffix:
define Number "+Sg" | "+PI" ;
define Person "+1" | "+2" | "+3" ;
define Input Infinitive Number Person;
## phonetic alterations
define ChangeEndCons1 c -> z c || Vowel _ [ e | i ] r "+Sg" "+1";
define ChangeEndCons2 c -> z || [ Cons - z ] _ [ e | i ] r "+Sg" "+1" ;
define ChangeEndCons3 g m, gu m g, qu uc c|_ [e|i]r "+Sg" "+1";
define UIR [..] -> y || [ Letter - q ] u _ir [ "+Sg" | "+PI" "+3" ];
define ChangeEnd ChangeEndCons1 .o. ChangeEndCons2 o. ChangeEndCons3 o. UIR ;
## endings
define ielnfSuffix[i|e]r:
define PresEnding1s InfSuffix }->>0||_"+Sg" "+1
define PresEnding2s a r -> a s, ielnfSuffix -> es || _ "+Sg" "+2" ;
define PresEnding3s a r m a, ielnfSuffix }->>\mathrm{ e || _ "+'Sg" "+3" ;
define PresEnding1p r -> mos || _ "+PI" "+1";
define PresEnding2p a r >> ái s, e }\overline{r}->\mathrm{ éi s, ir r >> is || _"+PI" "+2";
define PresEnding3p a r m a n, ielnfSuffix >> en || _ "+PI" "+3"
define PresEnding PresEnding1s .o. PresEnding2s .o. PresEnding3s .o. PresEnding1p .o. PresEnding2p .o. PresEnding3p
## combining all
define CleanUp [ Person | Number ] -> "" || _ ;
define Regular [ Input .o. ChangeEnd .o. PresEnding ]
define Grammar [ IrregularForm .P. Regular ] .o. CleanUp ;
```

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Lexicon file

Exceptions are listed in the lexicon file:
Multichar_Symbols +Sg +PI +1 +2 +3

LEXICON Root

Verb; Sg1Verb;
LEXICON Verb
estar $+\mathrm{Sg}+1$:estoy \#; estar+Sg+2:estás \#; estar $+\mathrm{Sg}+3$:está \#; estar $+\mathrm{PI}+3$: están \#;
ser+Sg+1:soy \#; ser $+\mathrm{Sg}+2$:eres \#;
ser+Sg+3:es \#;
ser+PI+1:somos \#;
ser $+\mathrm{PI}+2$:sois \#;
ser+PI+3:son \#;

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Spanish verb: present tense

Spanish: stem alterations

Regular model: application

\$ flookup -i -w "" spanish.bin < spanish_test.in

caer + Sg +1	caigo	comer + Sg +3	come
ser $+\mathrm{Pl}+1$	somos	correr $+\mathrm{Pl}+2$	corréis
ser $+\mathrm{Pl}+2$	sois	vender+Pl+3	venden
ser+Sg+1	soy	escribir+Sg+2	escribes
estar+Pl+3	están	surgir+Pl+1	surgimos
estar+Sg+2	estás	destruir+Pl+3	destruyen
estar+Sg+3	está	instruir+Sg+2	instruyes
hablar+Sg+1	hablo	cojer+Sg+1	cojo
hablar+Sg+2	hablas	distinguir+Sg+1	distingo
cantar+Pl+1	cantamos	conducir $+S g+1$	conduzco

Computational morphology. Day 3. Real-world morphology.

Spanish: stem alterations

- Stem alterations occur simultaneously in several forms (all singular and $+\mathrm{Pl}+3$).
- It is inconvenient to write in the lexicon all alterations.

Spanish: stem alterations

- Stem alterations occur simultaneously in several forms (all singular and $+\mathrm{Pl}+3$).
- It is inconvenient to write in the lexicon all alterations.
- Moreover, after stem alterations stems are subject to usual phonological rules:
- elegir $+\mathrm{Sg}+1 \rightarrow$ elijo
- seguir $+\mathrm{Sg}+1 \rightarrow$ sigo (not *siguo).

Spanish: stem alterations

- Stem alterations occur simultaneously in several forms (all singular and $+\mathrm{Pl}+3$).
- It is inconvenient to write in the lexicon all alterations.
- Moreover, after stem alterations stems are subject to usual phonological rules:
- elegir $+\mathrm{Sg}+1 \rightarrow$ elijo
- seguir $+\mathrm{Sg}+1 \rightarrow$ sigo (not *siguo).
- In stem alteration branch we compose stem alteration with phonological changes.
- In regular branch only phonological changes are applied.

Spanish: stem alterations

- Stem alterations occur simultaneously in several forms (all singular and $+\mathrm{Pl}+3$).
- It is inconvenient to write in the lexicon all alterations.
- Moreover, after stem alterations stems are subject to usual phonological rules:
- elegir $+\mathrm{Sg}+1 \rightarrow$ elijo
- seguir $+\mathrm{Sg}+1 \rightarrow$ sigo (not *siguo).
- In stem alteration branch we compose stem alteration with phonological changes.
- In regular branch only phonological changes are applied.
- This is lenient composition:

$$
X . O . Y=(X . o . Y) . P . Y
$$

Spanish: stem alterations

- Stem alterations occur simultaneously in several forms (all singular and $+\mathrm{Pl}+3$).
- It is inconvenient to write in the lexicon all alterations.
- Moreover, after stem alterations stems are subject to usual phonological rules:
- elegir $+\mathrm{Sg}+1 \rightarrow$ elijo
- seguir $+\mathrm{Sg}+1 \rightarrow$ sigo (not *siguo).
- In stem alteration branch we compose stem alteration with phonological changes.
- In regular branch only phonological changes are applied.
- This is lenient composition:

$$
X . O . Y=(X . o . Y) . P . Y
$$

- But we use priority union instead.

Spanish: stem alterations

- We have two alteration branches:
- First inserts -(i)g-before ending of exceptional $+\mathrm{Sg}+1$ forms: (caer $+\mathrm{Sg}+1 \rightarrow$ caigo, salir $+\mathrm{Sg}+1 \rightarrow$ salgo).
- Second deals with stem vowel change (-o-/-ue-, -e-/-ie-, -e-/-i-).
- First branch has higher priority: $($ tener $+S g+1 \rightarrow$ tengo, but tener $+S g+2 \rightarrow$ tienes, tener $+S g+3 \rightarrow$ tiene $)$.

Spanish: stem alterations

- We have two alteration branches:
- First inserts -(i)g-before ending of exceptional $+\mathrm{Sg}+1$ forms:

$$
\text { (caer }+\mathrm{Sg}+1 \rightarrow \text { caigo, salir }+\mathrm{Sg}+1 \rightarrow \text { salgo). }
$$

- Second deals with stem vowel change (-o-/-ue-, -e-/-ie-, -e-/-i-).
- First branch has higher priority: $($ tener $+S g+1 \rightarrow$ tengo, but tener + Sg $+2 \rightarrow$ tienes, tener $+S g+3 \rightarrow$ tiene).
- Not to deal with pseudoforms as *traiger we replace ending with special symbol:

```
!!!first stem.lexc!!!
LEXICON Root
traer:traiG%!Ending2%! #;
salir:salG%!Ending3%! #;
```


Spanish: stem alterations

- We have two alteration branches:
- First inserts -(i)g-before ending of exceptional $+\mathrm{Sg}+1$ forms:

$$
\text { (caer }+\mathrm{Sg}+1 \rightarrow \text { caigo, salir }+\mathrm{Sg}+1 \rightarrow \text { salgo). }
$$

- Second deals with stem vowel change (-o-/-ue-, -e-/-ie-, -e-/-i-).
- First branch has higher priority: $($ tener $+S g+1 \rightarrow$ tengo, but tener + Sg $+2 \rightarrow$ tienes, tener $+S g+3 \rightarrow$ tiene).
- Not to deal with pseudoforms as *traiger we replace ending with special symbol:
!!!first_stem.lexc!!!
LEXICON Root
traer:traiG\%! Ending2\%! \#;
salir:salG\%!Ending3\%! \#;
- Analogously for second branch (dorm- \rightarrow duerm-):
!!!second stem.lexc!!!
LEXICON Root
tener:tien\%!Ending2\%! \#;
pedir:pid\%!Ending2\%! \#;

Spanish: stem alterations

- Verb endings are replaced by markers (rules are changed accordingly):

$$
\begin{aligned}
& \text { define Marker [a r] -> "!Ending1!" , [e r] -> "!Ending2!" , } \\
& \text { [i r] -> "!Ending3!" || _ Number ; }
\end{aligned}
$$

- Stem transformations are read from lexicons:
\#\# lexicon for stem changes
read lexc first_stem.lexc
define FirstStem ;
define FirstStemChange FirstStem " + Sg" " +1 " ;
read lexc second_stem.lexc
define SecondStem ;
define SecondStemChange SecondStem ["+Sg" ? | "+PI" "+3"];
define IrregularStemChange FirstStemChange .P. SecondStemChange;

Spanish: stem alterations

- Verb endings are replaced by markers (rules are changed accordingly):

$$
\begin{aligned}
& \text { define Marker [a r] -> "!Ending1!", [e r] -> "!Ending2!" }, \\
& \text { [i r] -> "!Ending3!" || _ Number ; }
\end{aligned}
$$

- Stem transformations are read from lexicons:
\#\# lexicon for stem changes
read lexc first_stem.lexc
define FirstStem ;
define FirstStemChange FirstStem " + Sg" " +1 " ;
read lexc second_stem.lexc
define SecondStem ;
define SecondStemChange SecondStem ["+Sg" ? | "+PI" "+3"];
define IrregularStemChange FirstStemChange .P. SecondStemChange;
- In the end everything is combined by priority union:
define Regular [Input .o. [IrregularStemChange .P. Marker] .o. ChangeEnd .o. PresEnding] ;

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Spanish verb: present tense

Spanish: stem alterations

- Stem alterations work indeed:

\$ flookup -i	-w	"" spanish_full.bin < spanish_stem.in	
detraer+Sg+1	detraigo	pensar+Pl+1	pensamos
tener+Pl+1	tenemos	morir+Sg+3	muere
tener+Pl+2	tenéis	morir+Pl+2	moris
tener+Sg+1	tengo	pedir+Pl+3	piden
dormir+Pl+3	duermen	pedir+Sg+2	pides
dormir+Sg+2	duermes	preferir+Pl+1	preferimos
hacer+Sg+1	hago	preferir+Pl+3	prefieren
hacer+Sg+3	hace	preferir+Sg+1	prefiero
pensar+Sg+1	pienso	decir+Sg+3	dice
pensar+Sg+2	piensas	preferir+Sg+1	prefiero

Spanish: stem alterations

- Stem alterations work indeed:

```
$ flookup -i -w "" spanish_full.bin < spanish_stem.in
detraer+Sg+1 detraigo pensar+Pl+1 pensamos
tener+Pl+1 tenemos
tener+Pl+2 tenéis
tener+Sg+1 tengo
dormir+Pl+3 duermen
dormir+Sg+2 duermes
hacer+Sg+1 hago
hacer+Sg+3 hace
pensar+Sg+1 pienso
pensar+Sg+2 piensas
```

```
morir+Sg+3 muere
```

morir+Sg+3 muere
morir+Pl+2 moris
morir+Pl+2 moris
pedir+Pl+3 piden
pedir+Pl+3 piden
pedir+Sg+2 pides
pedir+Sg+2 pides
preferir+Pl+1 preferimos
preferir+Pl+1 preferimos
preferir+Pl+3 prefieren
preferir+Pl+3 prefieren
preferir+Sg+1 prefiero
preferir+Sg+1 prefiero
decir+Sg+3 dice
decir+Sg+3 dice
preferir+Sg+1 prefiero

```
preferir+Sg+1 prefiero
```

- Should be added: derivatonal prefixes.
- tener \rightarrow contener, mantener, detener, ...
- hacer \rightarrow rehacer, deshacer, ...

Spanish: fusion

- $+1+\mathrm{Sg}$ form once more:

Infinitive	$+1+$ Sg	gerund
partir	parto	partiendo
imbuir	imbuyo	imbuyendo
destruir	destruyo	destruyendo
delinquir	delinco	delinquiendo
distinguir	distingo	distinguiendo
coger	cojo	cogiendo
agradecer	agradezco	agradeciendo
mecer	mezo	meciendo

Spanish: fusion

- $+1+\mathrm{Sg}$ form once more:

Infinitive	$+1+$ Sg	gerund
partir	parto	partiendo
imbuir	imbuyo	imbuyendo
destruir	destruyo	destruyendo
delinquir	delinco	delinquiendo
distinguir	distingo	distinguiendo
coger	cojo	cogiendo
agradecer	agradezco	agradeciendo
mecer	mezo	meciendo

- Personal ending fuses with the stem on morpheme boundary.
- That could be carefully modeled with context "phonetic" rules.

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Arabic: root-and-pattern morphology
Arabic: root-and-pattern morphology

- So far morpheme structure was linear.

Arabic: root-and-pattern morphology

- So far morpheme structure was linear.
- That is not true for Semitic languages (e.g. Arabic):
kataba "(he) wrote+Perf"
kattabat "(she intensively) wrote+Perf"
yaktubu "(he) was written+Imp"
takattibu "(she) was (intensively) written+Imp"

Arabic: root-and-pattern morphology

- So far morpheme structure was linear.
- That is not true for Semitic languages (e.g. Arabic):
kataba "(he) wrote+Perf"
kattabat "(she intensively) wrote+Perf"
yaktubu "(he) was written+Imp"
takattibu "(she) was (intensively) written+Imp"
- Root $k-t-b$ consists of consonants (usually 3).
- Vowels reflect grammatical information.

Arabic: root-and-pattern morphology

- So far morpheme structure was linear.
- That is not true for Semitic languages (e.g. Arabic):
kataba "(he) wrote+Perf"
kattabat "(she intensively) wrote+Perf"
yaktubu "(he) was written+Imp"
takattibu "(she) was (intensively) written+Imp"
- Root $k-t-b$ consists of consonants (usually 3).
- Vowels reflect grammatical information.
- Different verb classes have different vowel patterns:

marida "(he became) ill+Perf"	
marradat	"(she intensively became) ill+Perf"
yamradu	"(he) was made ill+Imp"
tamarridu "(she) was (intensively) made ill+Imp"	

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Arabic: root-and-pattern morphology

Arabic: simple example

- We want to model something like:
\langle stem $\rangle\langle$ Type $\rangle\langle$ Voice $\rangle\langle$ Aspect $\rangle\langle$ Person $\rangle\langle$ Gender $\rangle \mapsto\langle$ wordForm \rangle

Arabic: simple example

- We want to model something like:
\langle stem $\rangle\langle$ Type $\rangle\langle$ Voice $\rangle\langle$ Aspect $\rangle\langle$ Person $\rangle\langle$ Gender $\rangle \mapsto\langle$ wordForm \rangle
- Possible values:
- \langle Type $\rangle \in\{I, I I\}$,
- \langle Voice $\rangle \in\{$ Act, Pass $\}$,
- \langle Aspect $\rangle \in\{$ Perf, Imperf $\}$,
- \langle Person $\rangle \in\{3\}$,
- \langle Gender $\rangle \in\{\mathrm{M}, \mathrm{F}\}$.
- 16 variants.

Arabic: simple example

- We want to model something like:
\langle stem $\rangle\langle$ Type $\rangle\langle$ Voice $\rangle\langle$ Aspect $\rangle\langle$ Person $\rangle\langle$ Gender $\rangle \mapsto\langle$ wordForm \rangle
- Possible values:
- \langle Type $\rangle \in\{I, I I\}$,
- \langle Voice $\rangle \in\{$ Act, Pass $\}$,
- \langle Aspect $\rangle \in\{$ Perf, Imperf $\}$,
- \langle Person $\rangle \in\{3\}$,
- \langle Gender $\rangle \in\{\mathrm{M}, \mathrm{F}\}$.
- 16 variants.
- We model only one class (of the verb $K T B$ "to write").

Arabic: word formation

- Word formation in Arabic (A. A. Zalizniak's handout):
- Stem variants:

Type	Pattern	Example
I (basic)	K-T-B	kataba "to write"
II (intensive)	K-TT-B	kattaba "to write a lot"

- Prefix/suffix variants:

Person+Gender	Perf. suffix	Imp. prefix-suffix
$+3+$ Masc	-a	ya- $-\mathbf{u}$
$+3+$ Fem	-at	ta- $-\mathbf{u}$

- Vowel filler variants:

Aspect	Voice	Prefix	Filler I	Filler II
Perfect	Active		$\mathrm{a}-\mathrm{a}$	$\mathrm{a}-\mathrm{a}$
Perfect	Passive		$\mathrm{u}-\mathrm{i}$	$\mathrm{u}-\mathrm{i}$
Imperfect	Active	ya-	$\varnothing-\mathrm{u}$	$\mathrm{a}-\mathrm{i}$
Imperfect	Passive	yu-	$\varnothing-\mathrm{a}$	$\mathrm{a}-\mathrm{a}$

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: input

- Input format:

```
define Vowel [a|i|u ];
define Consonant [k|t|b|z|h|r|s|f|m|d|n|y];
define Letter [ Vowel | Consonant ];
define Stem Consonant Consonant Consonant;
define Type [ "+I" | "+II" ];
define Voice ["+Act" | "+Pass"];
define Aspect ["+Perf" | "+Imperf"];
define Person "+3";
define Gender ["+M" | "+F"];
define Input Stem Type Voice Aspect Person Gender;
```


Arabic conjugation in FOMA: input

- Input format:

```
define Vowel [a|i|u ];
define Consonant [k|t|b|z|h|r|s|f|m|d|n|y];
define Letter [ Vowel | Consonant ];
define Stem Consonant Consonant Consonant;
define Type [ "+I" | "+II" ];
define Voice ["+Act" | "+Pass"];
define Aspect ["+Perf" | "+Imperf"];
define Person "+3";
define Gender ["+M" | "+F"];
define Input Stem Type Voice Aspect Person Gender;
```

- Vowel positions are marked with digits:
define Olnsertion [..] -> "0" || .\#. define 1 Insertion [..] -> "1" || "0" Consonant define 2 Insertion [..] $->$ "2" || "1" Consonant define 3Insertion [..] -> "3" || "2" Consonant define PosInsertion Olnsertion .o. 1Insertion .o. $\overline{2}$ Insertion .o. 3Insertion;

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: fillers

- Doubling second consonant of intensive:

```
define CheckTypel ? \(*\) " + I" ? \(*\)
define CheckTypell ? \(*\) " + II" ? \(*\);
```



```
    \(->\) [n n] || _ "2";
```

define StemProcessing [CheckTypel] | [CheckTypell .o. TypelIDuplication];

Arabic conjugation in FOMA: fillers

- Doubling second consonant of intensive:
define CheckTypel ?* "+।" ?*;
define CheckTypell ? $*$ " + II" ? $*$;
define TypellDuplication $\mathrm{k} \rightarrow>[\mathrm{k} k], \mathrm{b} \rightarrow>[\mathrm{b} \mathrm{b}], \mathrm{t} \rightarrow>[\mathrm{t} \mathrm{t}], \mathrm{z}->[\mathrm{z} \mathrm{z}], \mathrm{h}$ $\rightarrow[\mathrm{h} \mathrm{h}], \mathrm{r} \rightarrow \mathrm{rr}], \mathrm{s} \rightarrow>[\mathrm{s} \mathrm{s}], \mathrm{f} \rightarrow \mathrm{ff} \mathrm{f}], \mathrm{m} \rightarrow$ [m m], d \rightarrow [d d], n $->$ [n n] || _ "2";
define StemProcessing [CheckTypel] | [CheckTypell .o. TypellDuplication];
- Defining fillers:

```
define aaFill "1" -> a, "2" -> a;
define aiFill "1" -> a, "2" -> i;
define uiFill "1" -> u, "2" -> i;
define OaFill "1" -> [, "2" -> a;
define 0uFill "1" -> [, "2"-> u;
```


Arabic conjugation in FOMA: selecting the rule

- Exhaustive search for appropriate rule:
define PerfectActiveFill aaFill;
define ImperfectActiveFill [CheckTypel .o. OuFill] | [CheckTypell .o. aiFill];
define ActiveFill [CheckPerf .o. PerfectActiveFill] | [CheckImperf .o.
ImperfectActiveFill];
define PerfectPassiveFill uiFill;
define ImperfectPassiveFill [CheckTypel .o. OaFill] | [CheckTypell .o. aaFill];
define PassiveFill [CheckPerf .o. PerfectPassiveFill] | [Checklmperf .o.
ImperfectPassiveFill];
define Fill [CheckPass .o. PassiveFill] | [CheckAct .o. ActiveFill] ;

Arabic conjugation in FOMA: selecting the rule

- Exhaustive search for appropriate rule:
define PerfectActiveFill aaFill;
define ImperfectActiveFill [CheckTypel .o. OuFill] | [CheckTypell .o. aiFill];
define ActiveFill [CheckPerf .o. PerfectActiveFill] | [CheckImperf .o. ImperfectActiveFill];
define PerfectPassiveFill uiFill;
define ImperfectPassiveFill [CheckTypel .o. OaFill] | [CheckTypell .o. aaFill];
define PassiveFill [CheckPerf .o. PerfectPassiveFill] | [CheckImperf .o.
ImperfectPassiveFill];
define Fill [CheckPass .o. PassiveFill] | [CheckAct .o. ActiveFill] ;
- The same for prefixes (0 marker):
define OPrefix "0" -> [;
define taPrefix "0" $->$ t a;
define yaPrefix "0" -> y a;
define tuPrefix " 0 " $->\mathrm{t} \mathbf{u}$;
define yuPrefix "0" -> y u;
define PerfectPrefix OPrefix;
define ImperfectActivePrefix [CheckMasc .o. yaPrefix] | [CheckFem .o. taPrefix] ;
define ImperfectPassivePrefix [CheckMasc .o. yuPrefix] | [CheckFem .o. tuPrefix] ;
define ImperfectPrefix [CheckAct .o. ImperfectActivePrefix] | [CheckPass .o.
ImperfectPassivePrefix] ;
define Prefix [CheckPerf .o. PerfectPrefix] | [CheckImperf .o. ImperfectPrefix] ;

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: selecting the rule

- Processing the suffixes (3 marker):
define ImperfectSuffix "3" -> u || _ Type;
define PerfectMascSuffix "3" $->$ a $\|$ _ Type;
define PerfectFemSuffix "3" -> a t || _ Type;
define PerfectSuffix [CheckMasc .o. PerfectMascSuffix] | [CheckFem .o.
PerfectFemSuffix] ;
define Suffix [CheckPerf .o. PerfectSuffix] | [CheckImperf .o. ImperfectSuffix];

Arabic conjugation in FOMA: selecting the rule

- Processing the suffixes (3 marker):
define ImperfectSuffix "3" -> u || _ Type;
define PerfectMascSuffix "3" -> a $\prod_{\text {I _ Type; }}$
define PerfectFemSuffix "3" -> a t || _ Type;
define PerfectSuffix [CheckMasc .o. PerfectMascSuffix] | [CheckFem .o.
PerfectFemSuffix] ;
define Suffix [CheckPerf .o. PerfectSuffix] | [CheckImperf .o. ImperfectSuffix];
- Combining all stages together:
define Cleanup Type | Voice | Aspect | Person | Gender -> [] ; define Grammar Input .o. PosInsertion .o. StemProcessing .o. Fill .o. Prefix .o. Suffix .o. Cleanup;

Arabic conjugation in FOMA: selecting the rule

- Processing the suffixes (3 marker):
define ImperfectSuffix "3" $->$ u || Type;
define PerfectMascSuffix "3" -> a $\overline{1} \quad$ Type;
define PerfectFemSuffix "3" -> a t || _ Type;
define PerfectSuffix [CheckMasc .o. PerfectMascSuffix] | [CheckFem .o.
PerfectFemSuffix] ;
define Suffix [CheckPerf .o. PerfectSuffix] | [CheckImperf .o. ImperfectSuffix];
- Combining all stages together:
define Cleanup Type | Voice | Aspect | Person | Gender $->$ []; define Grammar Input .o. PosInsertion .o. StemProcessing .o. Fill .o. Prefix .o. Suffix .o. Cleanup;
- Real Arabic morphology is much more complex.

Arabic conjugation in FOMA: selecting the rule

- Processing the suffixes (3 marker):

```
define ImperfectSuffix "3" -> u || _ Type;
define PerfectMascSuffix "3" -> a || _ Type;
define PerfectFemSuffix "3" -> a t || _ Type;
define PerfectSuffix [ CheckMasc .o. PerfectMascSuffix ] | [CheckFem .o.
    PerfectFemSuffix ] ;
define Suffix [ CheckPerf .o. PerfectSuffix ] | [ CheckImperf .o. ImperfectSuffix ];
```

- Combining all stages together:
define Cleanup Type | Voice | Aspect | Person | Gender $->$ [] ; define Grammar Input .o. PosInsertion .o. StemProcessing .o. Fill .o. Prefix .o. Suffix .o. Cleanup;
- Real Arabic morphology is much more complex.
- But it was one of the first languages to obtain a transducer grammar (Beesley, 1990).

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging: example

- The main task of computational morphology: morphological tagging.
- Tagging assigns morphological labels to words.

DT	JJ	NN	VBD	DT	JJ
NN					
The baseball					
player	made	a	home	run	

Morphological tagging: example

- The main task of computational morphology: morphological tagging.
- Tagging assigns morphological labels to words.

DT JJ	NN	VBD	DT	JJ	NN
The baseball player	made	a	home	run	

- The most difficult problem: homonymy.

PRP	VB	RB	TO	VB	NN
l	run	home	to	play	baseball

Morphological tagging: example

- The main task of computational morphology: morphological tagging.
- Tagging assigns morphological labels to words.

DT JJ	NN	VBD	DT	JJ	NN
The baseball	player	made	a	home	run

- The most difficult problem: homonymy.

PRP	VB	RB	TO	VB	NN
I	run	home	to	play	baseball

- Some words have several tags:
- baseball: NN, JJ
- run: VB, VBN, NN
- home: NN, JJ, RB

Morphological tagging: example

- The main task of computational morphology: morphological tagging.
- Tagging assigns morphological labels to words.

DT JJ	NN	VBD	DT	JJ	NN
The baseball	player	made	a	home	run

- The most difficult problem: homonymy.

PRP	VB	RB	TO	VB	NN
I	run	home	to	play	baseball

- Some words have several tags:
- baseball: NN, JJ
- run: VB, VBN, NN
- home: NN, JJ, RB
- How to discriminate between possible variants?

Morphological tagging: example

- The main task of computational morphology: morphological tagging.
- Tagging assigns morphological labels to words.

DT JJ	NN	VBD	DT	JJ	NN
The baseball	player	made	a	home	run

- The most difficult problem: homonymy.

PRP	VB	RB	TO	VB	NN
I	run	home	to	play	baseball

- Some words have several tags:
- baseball: NN, JJ
- run: VB, VBN, NN
- home: NN, JJ, RB
- How to discriminate between possible variants?
- Other problem: tagging of unknown words.

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging: variants

- Two variants of morphological tagging.
- Coarse (POS-tagging): only part-of-speech labels (about 10-15 labels).

baseball NN

Morphological tagging: variants

- Two variants of morphological tagging.
- Coarse (POS-tagging): only part-of-speech labels (about 10-15 labels).

baseball NN

- Fine-grained: full morphological description.
- Feature-based description:
kupila "(she) bought" VERB Mood=Ind, Tense=Past, Aspect=Perf, Voice=Active, Number=Sing, Gender=Fem

Morphological tagging: variants

- Two variants of morphological tagging.
- Coarse (POS-tagging): only part-of-speech labels (about 10-15 labels).

baseball NN

- Fine-grained: full morphological description.
- Feature-based description:
kupila "(she) bought" VERB Mood=Ind, Tense=Past, Aspect=Perf, Voice=Active, Number=Sing, Gender=Fem
- Positional description:
kupila Vmis-sfa-e-

Morphological tagging: variants

- Two variants of morphological tagging.
- Coarse (POS-tagging): only part-of-speech labels (about 10-15 labels).

baseball NN

- Fine-grained: full morphological description.
- Feature-based description:
kupila "(she) bought" VERB Mood=Ind, Tense=Past, Aspect=Perf, Voice=Active, Number=Sing, Gender=Fem
- Positional description:
kupila Vmis-sfa-e-
- For English: no coarse tags, extended set of POS-tags.

Morphological tagging: variants

- Two variants of morphological tagging.
- Coarse (POS-tagging): only part-of-speech labels (about 10-15 labels).

baseball NN

- Fine-grained: full morphological description.
- Feature-based description:
kupila "(she) bought" VERB Mood=Ind, Tense=Past, Aspect=Perf, Voice=Active, Number=Sing, Gender=Fem
- Positional description:
kupila Vmis-sfa-e-
- For English: no coarse tags, extended set of POS-tags.
- For inflectional languages: large number of complex tags (up to 1000 for Russian or Czech).

Morphological tagging standards

- Oldest standard — Penn treebank (Marcus et al., 1993). 36 POStags for English with no inner structure (https://www.ling. upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html):

12.	NN	Noun, singular or mass
13.	NNS	Noun, plural
14.	NNP	Proper noun, singular
15.	NNPS	Proper noun, plural

Morphological tagging standards

- Oldest standard — Penn treebank (Marcus et al., 1993). 36 POStags for English with no inner structure (https://www.ling. upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html):

12.	NN	Noun, singular or mass
13.	NNS	Noun, plural
14.	NNP	Proper noun, singular
15.	NNPS	Proper noun, plural

- For inflectional languages, two basic approaches:
- Positional tagset (Multext-East project for Slavic languages).

Morphological tagging standards

- Oldest standard — Penn treebank (Marcus et al., 1993). 36 POStags for English with no inner structure (https://www.ling. upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html):

12.	NN	Noun, singular or mass
13.	NNS	Noun, plural
14.	NNP	Proper noun, singular
15.	NNPS	Proper noun, plural

- For inflectional languages, two basic approaches:
- Positional tagset (Multext-East project for Slavic languages).
- Feature-based tagset (Universal Dependencies project).

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Positional tagsets

- Used in Multext-East project for Slavic languages (http://nl.ijs.si/ME/).
- Each tag is a sequence of letters.

Positional tagsets

- Used in Multext-East project for Slavic languages (http://nl.ijs.si/ME/).
- Each tag is a sequence of letters.
- First capital letter stands for part-of-speech (N - noun, V - verb, etc.).
- For most Slavic languages there are 13 basic POS-tags.

Positional tagsets

- Used in Multext-East project for Slavic languages (http://nl.ijs.si/ME/).
- Each tag is a sequence of letters.
- First capital letter stands for part-of-speech (N - noun, V - verb, etc.).
- For most Slavic languages there are 13 basic POS-tags.
- Other smallcase letters reflect features:

Ncmsny	common noun, masculine, singular, neuter, animate (yes).
Vmis-sfa-e-	main verb, indicative, past(s), singular, feminine, active voice, perfect (e)

Positional tagsets

- Used in Multext-East project for Slavic languages (http://nl.ijs.si/ME/).
- Each tag is a sequence of letters.
- First capital letter stands for part-of-speech (N - noun, V - verb, etc.).
- For most Slavic languages there are 13 basic POS-tags.
- Other smallcase letters reflect features:

Ncmsny	common noun, masculine, singular, neuter, animate (yes).
Vmis-sfa-e-	main verb, indicative, past(s), singular, feminine, active voice, perfect (e)

- Disadvantage: tags are language- and specification-dependent.

Feature-based tagsets

- Tags are specified accoriding to CONLL-U format http://universaldependencies.org/format.html.
- Each tag has two parts: universal POS-tag (UPOSTAG) and feature-value description (FEATS).

Feature-based tagsets

- Tags are specified accoriding to CONLL-U format http://universaldependencies.org/format.html.
- Each tag has two parts: universal POS-tag (UPOSTAG) and feature-value description (FEATS).
- 17 universal POS labels:

ADJ	adjective	INTJ	interjection	PUNCT	punctuation
ADP	adposition	NOUN	noun	SCONJ	subordinating conjunction
ADV	adverb	NUM	numeral	SYM	symbol
AUX	auxiliary CCONJ	PART condinating	PRON	particle	
pronoun	VERB	verb			
DET	veterminer det	PROPN	proper noun		other

Feature-based tagsets

- Tags are specified accoriding to CONLL-U format http://universaldependencies.org/format.html.
- Each tag has two parts: universal POS-tag (UPOSTAG) and feature-value description (FEATS).
- 17 universal POS labels:

ADJ	adjective	INTJ	interjection	PUNCT	punctuation
ADP	adposition	NOUN	noun	SCONJ	subordinating conjunction
ADV	adverb	NUM	numeral	SYM	symbol
AUX	auxiliary	PART	particle	VERB	verb
CCONJ	coordinating conjunction determiner	PRON	pronoun	X	other
DET	PROPN	proper noun			

- 21 features: 6 lexical and 15 inflectional (Gender, Number, etc.).

Feature-based tagsets

- Tags are specified accoriding to CONLL-U format http://universaldependencies.org/format.html.
- Each tag has two parts: universal POS-tag (UPOSTAG) and feature-value description (FEATS).
- 17 universal POS labels:

ADJ	adjective	INTJ	interjection	PUNCT	punctuation
ADP	adposition	NOUN	noun	SCONJ	subordinating conjunction
ADV	adverb	NUM	numeral	SYM	symbol
AUX	auxiliary CCONJ	PART condinating	PRON	particle	
pronoun	VERB	verb			
DET	veterminer det	PROPN	proper noun		other

- 21 features: 6 lexical and 15 inflectional (Gender, Number, etc.).
- Is a general standard for corpora in different languages (50 languages in version 2.0, March, 2017).

Computational morphology. Day 3. Real-world morphology.
N -gram models
N-gram models: motivation

- Morphological tagging seeks for most probable sequence of tags for given sequence of words.

N-gram models: motivation

- Morphological tagging seeks for most probable sequence of tags for given sequence of words.
- Formally, for given words $\mathbf{w}_{1, N}=w_{1} \ldots w_{N}$ we search for sequence of tags $\widehat{\mathbf{t}}_{1, N}=t_{1} \ldots t_{N}$ with highest probability $p(\mathbf{t} \mid \mathbf{w})$.

$$
\widehat{t}=\operatorname{argmax}_{\mathbf{t}} p(\mathbf{t} \mid \mathbf{w})
$$

N-gram models: motivation

- Morphological tagging seeks for most probable sequence of tags for given sequence of words.
- Formally, for given words $\mathbf{w}_{1, N}=w_{1} \ldots w_{N}$ we search for sequence of tags $\widehat{\mathbf{t}}_{1, N}=t_{1} \ldots t_{N}$ with highest probability $p(\mathbf{t} \mid \mathbf{w})$.

$$
\widehat{t}=\operatorname{argmax}_{\mathbf{t}} p(\mathbf{t} \mid \mathbf{w})
$$

- But how to calculate the probability $p(\mathbf{t} \mid \mathbf{w})$?

N-gram models: motivation

- Morphological tagging seeks for most probable sequence of tags for given sequence of words.
- Formally, for given words $\mathbf{w}_{1, N}=w_{1} \ldots w_{N}$ we search for sequence of tags $\widehat{\mathbf{t}}_{1, N}=t_{1} \ldots t_{N}$ with highest probability $p(\mathbf{t} \mid \mathbf{w})$.

$$
\widehat{t}=\operatorname{argmax}_{\mathbf{t}} p(\mathbf{t} \mid \mathbf{w})
$$

- But how to calculate the probability $p(\mathbf{t} \mid \mathbf{w})$?
- For now we cannot estimate even $p(\mathbf{t})$.

Probability of sequence

- By chain rule, $p\left(t_{1} \ldots t_{N}\right)$ is

$$
p\left(t_{1} \ldots t_{N}\right)=p\left(t_{1}\right) p\left(t_{2} \mid t_{1}\right) p\left(t_{3} \mid t_{1} t_{2}\right) \ldots p\left(t_{N} \mid t_{1} \ldots t_{N-1}\right)
$$

Probability of sequence

- By chain rule, $p\left(t_{1} \ldots t_{N}\right)$ is

$$
p\left(t_{1} \ldots t_{N}\right)=p\left(t_{1}\right) p\left(t_{2} \mid t_{1}\right) p\left(t_{3} \mid t_{1} t_{2}\right) \ldots p\left(t_{N} \mid t_{1} \ldots t_{N-1}\right)
$$

- There is no way to estimate $p\left(t_{1000} \mid t_{1} \ldots t_{999}\right)$.

Probability of sequence

- By chain rule, $p\left(t_{1} \ldots t_{N}\right)$ is

$$
p\left(t_{1} \ldots t_{N}\right)=p\left(t_{1}\right) p\left(t_{2} \mid t_{1}\right) p\left(t_{3} \mid t_{1} t_{2}\right) \ldots p\left(t_{N} \mid t_{1} \ldots t_{N-1}\right)
$$

- There is no way to estimate $p\left(t_{1000} \mid t_{1} \ldots t_{999}\right)$.
- N-gram model assumption: each word depends only on $n-1$ preceding words (in our case, tags).
- Formally, $p\left(t_{N} \mid t_{1} \ldots t_{N-1}\right)=p\left(t_{N} \mid t_{N-n+1} \ldots t_{N-1}\right)$.

Probability of sequence

- By chain rule, $p\left(t_{1} \ldots t_{N}\right)$ is

$$
p\left(t_{1} \ldots t_{N}\right)=p\left(t_{1}\right) p\left(t_{2} \mid t_{1}\right) p\left(t_{3} \mid t_{1} t_{2}\right) \ldots p\left(t_{N} \mid t_{1} \ldots t_{N-1}\right)
$$

- There is no way to estimate $p\left(t_{1000} \mid t_{1} \ldots t_{999}\right)$.
- N-gram model assumption: each word depends only on $n-1$ preceding words (in our case, tags).
- Formally, $p\left(t_{N} \mid t_{1} \ldots t_{N-1}\right)=p\left(t_{N} \mid t_{N-n+1} \ldots t_{N-1}\right)$.
- For example, for trigram model $(n=3)$:

$$
p\left(t_{1} \ldots t_{N}\right)=p\left(t_{1}\right) p\left(t_{2} \mid t_{1}\right) p\left(t_{3} \mid t_{1} t_{2}\right) p\left(t_{4} \mid t_{2} t_{3}\right) \ldots p\left(t_{N} \mid t_{N-2} t_{N-1}\right)
$$

Probability of sequence

- By chain rule, $p\left(t_{1} \ldots t_{N}\right)$ is

$$
p\left(t_{1} \ldots t_{N}\right)=p\left(t_{1}\right) p\left(t_{2} \mid t_{1}\right) p\left(t_{3} \mid t_{1} t_{2}\right) \ldots p\left(t_{N} \mid t_{1} \ldots t_{N-1}\right)
$$

- There is no way to estimate $p\left(t_{1000} \mid t_{1} \ldots t_{999}\right)$.
- N-gram model assumption: each word depends only on $n-1$ preceding words (in our case, tags).
- Formally, $p\left(t_{N} \mid t_{1} \ldots t_{N-1}\right)=p\left(t_{N} \mid t_{N-n+1} \ldots t_{N-1}\right)$.
- For example, for trigram model $(n=3)$:

$$
p\left(t_{1} \ldots t_{N}\right)=p\left(t_{1}\right) p\left(t_{2} \mid t_{1}\right) p\left(t_{3} \mid t_{1} t_{2}\right) p\left(t_{4} \mid t_{2} t_{3}\right) \ldots p\left(t_{N} \mid t_{N-2} t_{N-1}\right)
$$

- But how to estimate $p\left(t_{N} \mid t_{N-2} t_{N-1}\right)$?

Estimating n-gram probabilities

- $p\left(t_{3} \mid t_{1} t_{2}\right)$ is the fraction of time we expect t_{3} to occur after $t_{1} t_{2}$.

Estimating n-gram probabilities

- $p\left(t_{3} \mid t_{1} t_{2}\right)$ is the fraction of time we expect t_{3} to occur after $t_{1} t_{2}$.
- Let us calculate this fraction:

$$
p\left(t_{3} \mid t_{1} t_{2}\right)=\frac{c\left(t_{1} t_{2} t_{3}\right)}{c\left(t_{1} t_{2} \odot\right)}=\frac{c\left(t_{1} t_{2} t_{3}\right)}{\sum_{t} c\left(t_{1} t_{2} t\right)}
$$

$c\left(t_{1} t_{2} t_{3}\right)$ - number of $t_{1} t_{2} t_{3}$ occurrences, $c\left(t_{1} t_{2} \odot\right)-$ number of times something occurs after $t_{1} t_{2}$.

Estimating n-gram probabilities

- $p\left(t_{3} \mid t_{1} t_{2}\right)$ is the fraction of time we expect t_{3} to occur after $t_{1} t_{2}$.
- Let us calculate this fraction:

$$
\begin{aligned}
& p\left(t_{3} \mid t_{1} t_{2}\right)=\frac{c\left(t_{1} t_{2} t_{3}\right)}{c\left(t_{1} t_{2} \odot\right)}=\frac{c\left(t_{1} t_{2} t_{3}\right)}{\sum_{t} c\left(t_{1} t_{2} t\right)} \\
& c\left(t_{1} t_{2} t_{3}\right)-\text { number of } t_{1} t_{2} t_{3} \text { occurrences, } \\
& c\left(t_{1} t_{2} \odot\right)-\text { number of times something occurs after } t_{1} t_{2} .
\end{aligned}
$$

- Problem: everything containing a trigram that never occurred in training corpus $\left(c\left(t_{1} t_{2} t_{3}\right)=0\right)$ has count 0 .

Estimating n-gram probabilities

- $p\left(t_{3} \mid t_{1} t_{2}\right)$ is the fraction of time we expect t_{3} to occur after $t_{1} t_{2}$.
- Let us calculate this fraction:

$$
\begin{aligned}
& p\left(t_{3} \mid t_{1} t_{2}\right)=\frac{c\left(t_{1} t_{2} t_{3}\right)}{c\left(t_{1} t_{2} \odot\right)}=\frac{c\left(t_{1} t_{2} t_{3}\right)}{\sum_{t} c\left(t_{1} t_{2} t\right)} \\
& c\left(t_{1} t_{2} t_{3}\right)-\text { number of } t_{1} t_{2} t_{3} \text { occurrences, } \\
& c\left(t_{1} t_{2} \odot\right)-\text { number of times something occurs after } t_{1} t_{2} .
\end{aligned}
$$

- Problem: everything containing a trigram that never occurred in training corpus $\left(c\left(t_{1} t_{2} t_{3}\right)=0\right)$ has count 0 .
- Solution: every n -gram additionally occurs α times.

$$
p\left(t_{3} \mid t_{1} t_{2}\right)=\frac{c\left(t_{1} t_{2} t_{3}\right)+\alpha}{c\left(t_{1} t_{2} \odot\right)+\alpha|D|},|D|-\text { size of dictionary. }
$$

Estimating n-gram probabilities

- additive (Laplace) smoothing - add α to all the counts:

$$
p\left(t_{3} \mid t_{1} t_{2}\right)=\frac{c\left(t_{1} t_{2} t_{3}\right)+\alpha}{c\left(t_{1} t_{2} \odot\right)+\alpha|D|},|D|-\text { size of dictionary. }
$$

Estimating n-gram probabilities

- additive (Laplace) smoothing - add α to all the counts:

$$
p\left(t_{3} \mid t_{1} t_{2}\right)=\frac{c\left(t_{1} t_{2} t_{3}\right)+\alpha}{c\left(t_{1} t_{2} \odot\right)+\alpha|D|},|D|-\text { size of dictionary. }
$$

- How to choose α ? It should depend on n-gram order, size of dictionary, corpus size...

Estimating n-gram probabilities

- additive (Laplace) smoothing - add α to all the counts:

$$
p\left(t_{3} \mid t_{1} t_{2}\right)=\frac{c\left(t_{1} t_{2} t_{3}\right)+\alpha}{c\left(t_{1} t_{2} \odot\right)+\alpha|D|},|D|-\text { size of dictionary. }
$$

- How to choose α ? It should depend on n-gram order, size of dictionary, corpus size...
- With improper α : inadequate.
- Selection of proper α : too complicated (used only for unigram models).

Backoff smoothing

- Sometimes trigram counts are too sparse (data from Europarl corpus):

new scientific fact	0
scientific fact	12
new scientific do	0
scientific do	0

Backoff smoothing

- Sometimes trigram counts are too sparse (data from Europarl corpus):

new scientific fact	0
scientific fact	12
new scientific do	0
scientific do	0

- By trigram model $p($ fact \mid new scientific $)=p($ do \mid new scientific $)$.

Backoff smoothing

- Sometimes trigram counts are too sparse (data from Europarl corpus):

new scientific fact	0
scientific fact	12
new scientific do	0
scientific do	0

- By trigram model $p($ fact \mid new scientific $)=p($ do \mid new scientific $)$.
- We should "descend" to lower order for more reliable estimates.

Backoff smoothing

- Sometimes trigram counts are too sparse (data from Europarl corpus):

new scientific fact	0
scientific fact	12
new scientific do	0
scientific do	0

- By trigram model $p($ fact \mid new scientific $)=p($ do \mid new scientific $)$.
- We should "descend" to lower order for more reliable estimates.
- General scheme (interpolation):

$$
\begin{aligned}
p_{l}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right) & =\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)+(1-\lambda) p_{l}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right) \\
p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right) & =\frac{c\left(t_{1} \ldots t_{n}\right)}{c\left(t_{1} \ldots t_{n-1} \odot\right)} \text { ("honest" counts) }
\end{aligned}
$$

Backoff smoothing

- General scheme (interpolation):

$$
\begin{aligned}
& p_{l}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)=\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)+(1-\lambda) p_{l}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right) \\
& p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)=\frac{c\left(t_{1} \ldots t_{n}\right)}{c\left(t_{1} \ldots t_{n-1} \odot\right)} \text { ("honest" counts) }
\end{aligned}
$$

- General scheme (backoff):

$$
p_{B O}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)= \begin{cases}\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right), & c\left(t_{1} \ldots t_{n}\right)>0 \\ (1-\lambda) p_{B O}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right), & c\left(t_{1} \ldots t_{n}\right)=0\end{cases}
$$

Backoff smoothing

- General scheme (interpolation):

$$
\begin{aligned}
p_{l}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right) & =\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)+(1-\lambda) p_{l}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right) \\
p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right) & =\frac{c\left(t_{1} \ldots t_{n}\right)}{c\left(t_{1} \ldots t_{n-1} \odot\right)} \text { ("honest" counts) }
\end{aligned}
$$

- General scheme (backoff):

$$
p_{B O}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)= \begin{cases}\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right), & c\left(t_{1} \ldots t_{n}\right)>0 \\ (1-\lambda) p_{B O}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right), & c\left(t_{1} \ldots t_{n}\right)=0\end{cases}
$$

- How to calculate λ ?

Backoff smoothing

- General scheme (interpolation):

$$
\begin{aligned}
& p_{l}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)=\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)+(1-\lambda) p_{l}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right) \\
& p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)=\frac{c\left(t_{1} \ldots t_{n}\right)}{c\left(t_{1} \ldots t_{n-1} \odot\right)} \text { ("honest" counts) }
\end{aligned}
$$

- General scheme (backoff):

$$
p_{B O}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)= \begin{cases}\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right), & c\left(t_{1} \ldots t_{n}\right)>0 \\ (1-\lambda) p_{B O}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right), & c\left(t_{1} \ldots t_{n}\right)=0\end{cases}
$$

- How to calculate λ ?
- The greater is λ for history $t_{1} \ldots t_{n-1}$, the more we "trust" the counts and the less expect new words.

Backoff smoothing

- General scheme (interpolation):

$$
\begin{aligned}
p_{l}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right) & =\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)+(1-\lambda) p_{l}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right) \\
p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right) & =\frac{c\left(t_{1} \ldots t_{n}\right)}{c\left(t_{1} \ldots t_{n-1} \odot\right)} \text { ("honest" counts) }
\end{aligned}
$$

- General scheme (backoff):

$$
p_{B O}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)= \begin{cases}\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right), & c\left(t_{1} \ldots t_{n}\right)>0 \\ (1-\lambda) p_{B O}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right), & c\left(t_{1} \ldots t_{n}\right)=0\end{cases}
$$

- How to calculate λ ?
- The greater is λ for history $t_{1} \ldots t_{n-1}$, the more we "trust" the counts and the less expect new words.
- We do it when:
- $t_{1} \ldots t_{n-1}$ occurs enough times.

Backoff smoothing

- General scheme (interpolation):

$$
\begin{aligned}
p_{l}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right) & =\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)+(1-\lambda) p_{l}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right) \\
p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right) & =\frac{c\left(t_{1} \ldots t_{n}\right)}{c\left(t_{1} \ldots t_{n-1} \odot\right)} \text { ("honest" counts) }
\end{aligned}
$$

- General scheme (backoff):

$$
p_{B O}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)= \begin{cases}\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right), & c\left(t_{1} \ldots t_{n}\right)>0 \\ (1-\lambda) p_{B O}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right), & c\left(t_{1} \ldots t_{n}\right)=0\end{cases}
$$

- How to calculate λ ?
- The greater is λ for history $t_{1} \ldots t_{n-1}$, the more we "trust" the counts and the less expect new words.
- We do it when:
- $t_{1} \ldots t_{n-1}$ occurs enough times.
- $t_{1} \ldots t_{n-1}$ has not much continuations.

Witten-Bell smoothing

- Witten-Bell smoothing:

$$
\begin{aligned}
p_{l}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right) & =\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)+(1-\lambda) p_{l}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right) \\
\lambda & =c\left(t_{1} \ldots t_{n-1} \odot\right) c\left(t_{1} \ldots t_{n-1} \odot\right)+N_{1+}\left(t_{1} \ldots t_{n-1}\right) \\
N_{1+}\left(t_{1} \ldots t_{n-1}\right) & =\mid\left\{t \mid c\left(t_{1} \ldots t_{n-1} t\right)>0\right\} \\
N_{1+}\left(t_{1} \ldots t_{n-1}\right) & - \text { "number of continuations" }
\end{aligned}
$$

Witten-Bell smoothing

- Witten-Bell smoothing:

$$
\begin{aligned}
p_{l}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right) & =\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)+(1-\lambda) p_{l}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right) \\
\lambda & =c\left(t_{1} \ldots t_{n-1} \odot\right) c\left(t_{1} \ldots t_{n-1} \odot\right)+N_{1+}\left(t_{1} \ldots t_{n-1}\right) \\
N_{1+}\left(t_{1} \ldots t_{n-1}\right) & =\mid\left\{t \mid c\left(t_{1} \ldots t_{n-1} t\right)>0\right\} \\
N_{1+}\left(t_{1} \ldots t_{n-1}\right) & - \text { "number of continuations" }
\end{aligned}
$$

- Example (BNC corpus):

w_{1}	$c\left(w_{1} \odot\right)$	$N_{1+}\left(w_{1}\right)$	$N_{3+}\left(w_{1}\right)$	$\lambda\left(w_{1}\right)$	$1-\lambda\left(w_{1}\right)$
spite	2899	59	15	$\frac{2899}{2899+59}=0.980$	0.02
stupid	2898	602	117	$\frac{2898}{2898+602}=0.828$	0.172

Witten-Bell smoothing

- Witten-Bell smoothing:

$$
\begin{aligned}
p_{l}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right) & =\lambda p_{c}\left(t_{n} \mid \mathbf{t}_{1, n-1}\right)+(1-\lambda) p_{l}\left(t_{n} \mid \mathbf{t}_{2, n-1}\right) \\
\lambda & =c\left(t_{1} \ldots t_{n-1} \odot\right) c\left(t_{1} \ldots t_{n-1} \odot\right)+N_{1+}\left(t_{1} \ldots t_{n-1}\right) \\
N_{1+}\left(t_{1} \ldots t_{n-1}\right) & =\mid\left\{t \mid c\left(t_{1} \ldots t_{n-1} t\right)>0\right\} \\
N_{1+}\left(t_{1} \ldots t_{n-1}\right) & - \text { "number of continuations" }
\end{aligned}
$$

- Example (BNC corpus):

w_{1}	$c\left(w_{1} \odot\right)$	$N_{1+}\left(w_{1}\right)$	$N_{3+}\left(w_{1}\right)$	$\lambda\left(w_{1}\right)$	$1-\lambda\left(w_{1}\right)$
spite	2899	59	15	$\frac{2899}{2899+59}=0.980$	0.02
stupid	2898	602	117	$\frac{2898}{2898+602}=0.828$	0.172

- Unigram counts for stupid are 86 times more valuable than for spite.
- The more continuations we have, the less is λ.

Computational morphology. Day 3. Real-world morphology.
N -gram models

Witten-Bell smoothing

- In the worst case (even bigram $t_{n-1} t_{n}$ is unseen) we backoff to unigram probability.

Computational morphology. Day 3. Real-world morphology.
N -gram models

Witten-Bell smoothing

- In the worst case (even bigram $t_{n-1} t_{n}$ is unseen) we backoff to unigram probability.
- But that's not the unigram probability that should be used.

Witten-Bell smoothing

- In the worst case (even bigram $t_{n-1} t_{n}$ is unseen) we backoff to unigram probability.
- But that's not the unigram probability that should be used.
- Example: c (Angeles) is rather high, but it occurs only after Los.
- It is strange to assume this word after others.

Witten-Bell smoothing

- In the worst case (even bigram $t_{n-1} t_{n}$ is unseen) we backoff to unigram probability.
- But that's not the unigram probability that should be used.
- Example: c(Angeles) is rather high, but it occurs only after Los.
- It is strange to assume this word after others.
- Instead of unigram probability of t_{n} we use

$$
\begin{aligned}
p_{B O}\left(t_{n}\right) & =\frac{N_{+1}\left(t_{n}\right)}{\sum_{t} N_{+1}(t)} \\
N_{+1}\left(t_{n}\right) & =\mid\left\{t \mid c\left(t t_{n}\right)>0\right\} \\
N_{+1}\left(t_{n}\right) & - \text { (number of left continuations) }
\end{aligned}
$$

Witten-Bell smoothing

- In the worst case (even bigram $t_{n-1} t_{n}$ is unseen) we backoff to unigram probability.
- But that's not the unigram probability that should be used.
- Example: c(Angeles) is rather high, but it occurs only after Los.
- It is strange to assume this word after others.
- Instead of unigram probability of t_{n} we use

$$
\begin{aligned}
p_{B O}\left(t_{n}\right) & =\frac{N_{+1}\left(t_{n}\right)}{\sum_{t} N_{+1}(t)} \\
N_{+1}\left(t_{n}\right) & =\mid\left\{t \mid c\left(t t_{n}\right)>0\right\} \\
N_{+1}\left(t_{n}\right) & - \text { (number of left continuations) }
\end{aligned}
$$

- Witten-Bell smoothing is not the best, but enough for our purposes.

Witten-Bell smoothing

- In the worst case (even bigram $t_{n-1} t_{n}$ is unseen) we backoff to unigram probability.
- But that's not the unigram probability that should be used.
- Example: c(Angeles) is rather high, but it occurs only after Los.
- It is strange to assume this word after others.
- Instead of unigram probability of t_{n} we use

$$
\begin{aligned}
p_{B O}\left(t_{n}\right) & =\frac{N_{+1}\left(t_{n}\right)}{\sum_{t} N_{+1}(t)} \\
N_{+1}\left(t_{n}\right) & =\mid\left\{t \mid c\left(t t_{n}\right)>0\right\} \\
N_{+1}\left(t_{n}\right) & - \text { (number of left continuations) }
\end{aligned}
$$

- Witten-Bell smoothing is not the best, but enough for our purposes.
- More powerful methods:
- Deleted interpolation.
- Kneser-Ney smoothing (and its modified version).

Witten-Bell smoothing

- In the worst case (even bigram $t_{n-1} t_{n}$ is unseen) we backoff to unigram probability.
- But that's not the unigram probability that should be used.
- Example: c(Angeles) is rather high, but it occurs only after Los.
- It is strange to assume this word after others.
- Instead of unigram probability of t_{n} we use

$$
\begin{aligned}
p_{B O}\left(t_{n}\right) & =\frac{N_{+1}\left(t_{n}\right)}{\sum_{t} N_{+1}(t)} \\
N_{+1}\left(t_{n}\right) & =\mid\left\{t \mid c\left(t t_{n}\right)>0\right\} \\
N_{+1}\left(t_{n}\right) & - \text { (number of left continuations) }
\end{aligned}
$$

- Witten-Bell smoothing is not the best, but enough for our purposes.
- More powerful methods:
- Deleted interpolation.
- Kneser-Ney smoothing (and its modified version).
- Also non-ngram language model (factored models, neural netbased, etc.).

