
Computational morphology. Day 3. Real-world morphology.

Computational morphology.

Day 3. Real-world morphology.

Alexey Sorokin1,2

1Ìoscow State University, 2Moscow Institute of Science and Technology

European Summer School
in Logic, Language and Information,

Toulouse, 24-28 July, 2017

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Day 3 outline

Real-world linguistic phenomena in FOMA.

Morphological tagging: problem setting.
N-gram language models.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Day 3 outline

Real-world linguistic phenomena in FOMA.
Morphological tagging: problem setting.

N-gram language models.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Day 3 outline

Real-world linguistic phenomena in FOMA.
Morphological tagging: problem setting.
N-gram language models.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Two-level morphology

Finite-state morphology deals well with concatenative morpho-
logy.
Ideally: agglutinative languages (Turkish, Finnish, etc.).

General two-level scheme:

Create the slots for prototypical morphemes.
Fill these slots with appropriate morphemes according to morpho-
tactics and phonology.

Case study: Turkish verb in�ection.
Categories to model:

Voice: passive, active.
Tense: aorist, continuous.
Number: singular, plural.
Person: 1, 2, 3.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Two-level morphology

Finite-state morphology deals well with concatenative morpho-
logy.
Ideally: agglutinative languages (Turkish, Finnish, etc.).
General two-level scheme:

Create the slots for prototypical morphemes.

Fill these slots with appropriate morphemes according to morpho-
tactics and phonology.

Case study: Turkish verb in�ection.
Categories to model:

Voice: passive, active.
Tense: aorist, continuous.
Number: singular, plural.
Person: 1, 2, 3.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Two-level morphology

Finite-state morphology deals well with concatenative morpho-
logy.
Ideally: agglutinative languages (Turkish, Finnish, etc.).
General two-level scheme:

Create the slots for prototypical morphemes.
Fill these slots with appropriate morphemes according to morpho-
tactics and phonology.

Case study: Turkish verb in�ection.
Categories to model:

Voice: passive, active.
Tense: aorist, continuous.
Number: singular, plural.
Person: 1, 2, 3.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Two-level morphology

Finite-state morphology deals well with concatenative morpho-
logy.
Ideally: agglutinative languages (Turkish, Finnish, etc.).
General two-level scheme:

Create the slots for prototypical morphemes.
Fill these slots with appropriate morphemes according to morpho-
tactics and phonology.

Case study: Turkish verb in�ection.

Categories to model:

Voice: passive, active.
Tense: aorist, continuous.
Number: singular, plural.
Person: 1, 2, 3.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Two-level morphology

Finite-state morphology deals well with concatenative morpho-
logy.
Ideally: agglutinative languages (Turkish, Finnish, etc.).
General two-level scheme:

Create the slots for prototypical morphemes.
Fill these slots with appropriate morphemes according to morpho-
tactics and phonology.

Case study: Turkish verb in�ection.
Categories to model:

Voice: passive, active.
Tense: aorist, continuous.

Number: singular, plural.
Person: 1, 2, 3.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Two-level morphology

Finite-state morphology deals well with concatenative morpho-
logy.
Ideally: agglutinative languages (Turkish, Finnish, etc.).
General two-level scheme:

Create the slots for prototypical morphemes.
Fill these slots with appropriate morphemes according to morpho-
tactics and phonology.

Case study: Turkish verb in�ection.
Categories to model:

Voice: passive, active.
Tense: aorist, continuous.
Number: singular, plural.

Person: 1, 2, 3.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Two-level morphology

Finite-state morphology deals well with concatenative morpho-
logy.
Ideally: agglutinative languages (Turkish, Finnish, etc.).
General two-level scheme:

Create the slots for prototypical morphemes.
Fill these slots with appropriate morphemes according to morpho-
tactics and phonology.

Case study: Turkish verb in�ection.
Categories to model:

Voice: passive, active.
Tense: aorist, continuous.
Number: singular, plural.
Person: 1, 2, 3.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

Input format: in�nitive+Voice+Tense+Person+Number.

+Voice: +Pass/+Act.
+Tense: +Aor/+Cont.
+Person: +1/+2/+3.
+Number: +Sg/+Pl.
Verb form structure:

〈stem〉〈VoiceSuf〉〈Tense〉〈PersNumSuf〉

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

Input format: in�nitive+Voice+Tense+Person+Number.
+Voice: +Pass/+Act.
+Tense: +Aor/+Cont.
+Person: +1/+2/+3.
+Number: +Sg/+Pl.

Verb form structure:

〈stem〉〈VoiceSuf〉〈Tense〉〈PersNumSuf〉

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

Input format: in�nitive+Voice+Tense+Person+Number.
+Voice: +Pass/+Act.
+Tense: +Aor/+Cont.
+Person: +1/+2/+3.
+Number: +Sg/+Pl.
Verb form structure:

〈stem〉〈VoiceSuf〉〈Tense〉〈PersNumSuf〉

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

Verb form structure: 〈stem〉〈VoiceSuf〉〈Tense〉〈PersNumSuf〉.

Passive voice su�x: -n after vowels, -In after l, -Il otherwise.
Aorist su�x:

-r after vowels.
-Ir after consonants in polysyllabic stems.
-Ar after consonants in monosyllabic stems.
-Ir after 13 monosyllabic exceptions.

Progressive su�x:

-Iyor after consonants.
-yor after u, �u, i, �.
-Iyor after vowels, the vowel is removed.
-iyor after roots de-/ye-, the vowel is removed.

Verb ending (〈PersNumSuf〉):

Number

Person
1 2 3

Singular -Im -sIn -∅
Plural -Iz -sInIz -lAr

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

Verb form structure: 〈stem〉〈VoiceSuf〉〈Tense〉〈PersNumSuf〉.
Passive voice su�x: -n after vowels, -In after l, -Il otherwise.

Aorist su�x:

-r after vowels.
-Ir after consonants in polysyllabic stems.
-Ar after consonants in monosyllabic stems.
-Ir after 13 monosyllabic exceptions.

Progressive su�x:

-Iyor after consonants.
-yor after u, �u, i, �.
-Iyor after vowels, the vowel is removed.
-iyor after roots de-/ye-, the vowel is removed.

Verb ending (〈PersNumSuf〉):

Number

Person
1 2 3

Singular -Im -sIn -∅
Plural -Iz -sInIz -lAr

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

Verb form structure: 〈stem〉〈VoiceSuf〉〈Tense〉〈PersNumSuf〉.
Passive voice su�x: -n after vowels, -In after l, -Il otherwise.
Aorist su�x:

-r after vowels.
-Ir after consonants in polysyllabic stems.
-Ar after consonants in monosyllabic stems.
-Ir after 13 monosyllabic exceptions.

Progressive su�x:

-Iyor after consonants.
-yor after u, �u, i, �.
-Iyor after vowels, the vowel is removed.
-iyor after roots de-/ye-, the vowel is removed.

Verb ending (〈PersNumSuf〉):

Number

Person
1 2 3

Singular -Im -sIn -∅
Plural -Iz -sInIz -lAr

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

Verb form structure: 〈stem〉〈VoiceSuf〉〈Tense〉〈PersNumSuf〉.
Passive voice su�x: -n after vowels, -In after l, -Il otherwise.
Aorist su�x:

-r after vowels.
-Ir after consonants in polysyllabic stems.
-Ar after consonants in monosyllabic stems.
-Ir after 13 monosyllabic exceptions.

Progressive su�x:

-Iyor after consonants.
-yor after u, �u, i, �.
-Iyor after vowels, the vowel is removed.
-iyor after roots de-/ye-, the vowel is removed.

Verb ending (〈PersNumSuf〉):

Number

Person
1 2 3

Singular -Im -sIn -∅
Plural -Iz -sInIz -lAr

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

Verb form structure: 〈stem〉〈VoiceSuf〉〈Tense〉〈PersNumSuf〉.
Passive voice su�x: -n after vowels, -In after l, -Il otherwise.
Aorist su�x:

-r after vowels.
-Ir after consonants in polysyllabic stems.
-Ar after consonants in monosyllabic stems.
-Ir after 13 monosyllabic exceptions.

Progressive su�x:

-Iyor after consonants.
-yor after u, �u, i, �.
-Iyor after vowels, the vowel is removed.
-iyor after roots de-/ye-, the vowel is removed.

Verb ending (〈PersNumSuf〉):

Number

Person
1 2 3

Singular -Im -sIn -∅
Plural -Iz -sInIz -lAr

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

1 step: de�ning slots
de�ne Voice "+Act" | "+Pass" ;
de�ne Tense "+Aor" | "+Prog";
de�ne Number "+Sg" | "+Pl" ;
de�ne Person "+1" | "+2" | "+3" ;
de�ne Input In�nitive Voice Tense Person Number;
deleting −mAk and de�ning slots
de�ne MarkerInsertion [..] −> "!" || _ m [a | e] k Voice ;
de�ne In�nitiveDeletion m [a | e] k −> "" || "!" _ ;
de�ne TensePattern [[..] −> "!AorSu�x!" || "!" _ ?+ "+Aor"] .o. [[..] −> "!ProgSu�x!"

|| "!" _ ?+ "+Prog"];
de�ne PassivePattern [..] −> "!PassSu�x!" || "!" _ ?+ "+Pass" ;
de�ne Cleanup [Voice | Tense | "!"] −> "" ;

$ flookup -i -w "" turkish_diacr.bin < test.in

okumak+Pass+Prog+1+Pl oku!PassSuffix!!ProgSuffix!+1+Pl

gelmek+Pass+Aor+2+Sg gel!PassSuffix!!AorSuffix!+2+Sg

uyumak+Act+Prog+3+Pl uyu!ProgSuffix!+3+Pl

izlemek+Act+Prog+3+Pl izle!ProgSuffix!+3+Pl

bilmek+Act+Aor+2+Pl bil!AorSuffix!+2+Pl

g�ormek+Act+Aor+2+Pl g�or!AorSuffix!+2+Pl

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

2 step: �lling voice
passive su�x �lling
de�ne Passive1 "!PassSu�x!" −> I l || [Consonant − l] _ ;
de�ne Passive2 "!PassSu�x!" −> I n || l _ ;
de�ne Passive3 "!PassSu�x!" −> n || Vowel _ ;
de�ne PassiveSu�x Passive1 .o. Passive2 .o. Passive3 ;

$ flookup -i -w "" turkish_diacr.bin < test.in

okumak+Pass+Prog+1+Pl okun!ProgSuffix!+1+Pl

gelmek+Pass+Aor+2+Sg gelIn!AorSuffix!+2+Sg

uyumak+Act+Prog+3+Pl uyu!ProgSuffix!+3+Pl

izlemek+Act+Prog+3+Pl izle!ProgSuffix!+3+Pl

bilmek+Act+Aor+2+Pl bil!AorSuffix!+2+Pl

g�ormek+Act+Aor+2+Pl g�or!AorSuffix!+2+Pl

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

3 step: �lling aorist
aorist su�x �lling
de�ne PseudoVowel Vowel | I | A ;
read lexc aor_exception.lexc
de�ne AorException;
de�ne Monosyllable Consonant∗ Vowel Consonant∗ ;
de�ne AorSu�x0 "!AorSu�x!" −> I r || .#. AorException _ ;
de�ne AorSu�x1 "!AorSu�x!" −> r || PseudoVowel _ ;
de�ne AorSu�x2 "!AorSu�x!" −> A r || .#. Monosyllable _ ;
de�ne AorSu�x3 "!AorSu�x!" −> I r || _ ;
de�ne AorSu�x AorSu�x0 .o. AorSu�x1 .o. AorSu�x2 .o. AorSu�x3 ;

$ flookup -i -w "" turkish_diacr.bin < test.in

okumak+Pass+Prog+1+Pl okun!ProgSuffix!+1+Pl

gelmek+Pass+Aor+2+Sg gelInIr+2+Sg

uyumak+Act+Prog+3+Pl uyu!ProgSuffix!+3+Pl

izlemek+Act+Prog+3+Pl izle!ProgSuffix!+3+Pl

bilmek+Act+Aor+2+Pl bilIr+2+Pl

g�ormek+Act+Aor+2+Pl g�orAr+2+Pl

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

4 step: �lling progressive
progressive su�x �lling
de�ne ProgSu�x0 "!ProgSu�x!" −> "!" I y o r || _ ;
after i, �, u, �u
de�ne ProgSu�xVowel0 "!" I −> "" || [u | �u| i | �] _ ;
other vowels
de�ne ProgSu�xVowel1 [a | o | e | �o] "!" −> "" || _ ;
demek, yemek
de�ne ProgDemek e "!" I −> i || .#. [d | y] _ ;
sonorization
de�ne ProgSonor t −> d || .#. [g i | e | t a] _ "!" ;
de�ne ProgCleanup "!" −> "" || _ ;
de�ne ProgSu�x ProgSu�x0 .o. ProgSu�xVowel0 .o. ProgSu�xVowel1 .o. ProgDemek .

o. ProgSonor .o. ProgCleanup ;

$ flookup -i -w "" turkish_diacr.bin < test.in

okumak+Pass+Prog+1+Pl okunIyor+1+Pl

gelmek+Pass+Aor+2+Sg gelInIr+2+Sg

uyumak+Act+Prog+3+Pl uyuyor+3+Pl

izlemek+Act+Prog+3+Pl izlIyor+3+Pl

bilmek+Act+Aor+2+Pl bilIr+2+Pl

g�ormek+Act+Aor+2+Pl g�orAr+2+Pl

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

5 step: verbal endings
ending �lling
de�ne Ending1s "+1" "+Sg" −> I m || _ ;
de�ne Ending2s "+2" "+Sg" −> s I n || _ ;
de�ne Ending3s "+3" "+Sg" −> "" || _ ;
de�ne Ending1p "+1" "+Pl" −> I z || _ ;
de�ne Ending2p "+2" "+Pl" −> s I n I z || _ ;
de�ne Ending3p "+3" "+Pl" −> l A r || _ ;
de�ne Ending Ending1s .o. Ending2s .o. Ending3s .o. Ending1p .o. Ending2p .o.

Ending3p ;

$ flookup -i -w "" turkish_diacr.bin < test.in

okumak+Pass+Prog+1+Pl okunIyorIz

gelmek+Pass+Aor+2+Sg gelInIrsIn

uyumak+Act+Prog+3+Pl uyuyorlAr

izlemek+Act+Prog+3+Pl izlIyorlAr

bilmek+Act+Aor+2+Pl bilIrsInIz

g�ormek+Act+Aor+2+Pl g�orArsInIz

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Turkish verbs

Turkish verb conjugation

6 step: vowel harmony
Vowel Harmony (left context on output size)
de�ne VowelHarmony [A −> a // LastVowelHard _ ,, A −> e // LastVowelSoft _ ,,

I −> �// LastVowelHardStraight _ ,, I −> i //
LastVowelSoftStraight _ ,,

I −> u // LastVowelHardRound _ ,, I −> �u//
LastVowelSoftRound _] ;

de�ne Fill PassiveSu�x .o. AorSu�x .o. ProgSu�x .o. Ending .o. VowelHarmony ;
de�ne Grammar Input .o. Pattern .o. Fill ;

$ flookup -i -w "" turkish_diacr.bin < test.in

okumak+Pass+Prog+1+Pl okunuyoruz

gelmek+Pass+Aor+2+Sg gelinirsin

uyumak+Act+Prog+3+Pl uyuyorlar

izlemek+Act+Prog+3+Pl izliyorlar

bilmek+Act+Aor+2+Pl bilirsiniz

g�ormek+Act+Aor+2+Pl g�orersiniz

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

General model

Spanish verb conjugation is rather simple:

Number Person -ar (tomar) -er (comer) -ir (escribir)

Singular
1 tomo como escribo
2 tomas comes escribes
3 toma come escribe

Plural
1 tomamos comemos escribimos
2 tom�ais com�eis escrib��s
3 toman comen escriben

There are several morphonetic alterations:

In +1+Sg g becomes j before -er : emerger → emerjo.
In +1+Sg c turns to zc before -er/-ir and after vowel:
conducir → conduzco,
agradecer → agradezco (though mecer → mezo).

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

General model

Spanish verb conjugation is rather simple:

Number Person -ar (tomar) -er (comer) -ir (escribir)

Singular
1 tomo como escribo
2 tomas comes escribes
3 toma come escribe

Plural
1 tomamos comemos escribimos
2 tom�ais com�eis escrib��s
3 toman comen escriben

There are several morphonetic alterations:

In +1+Sg g becomes j before -er : emerger → emerjo.

In +1+Sg c turns to zc before -er/-ir and after vowel:
conducir → conduzco,
agradecer → agradezco (though mecer → mezo).

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

General model

Spanish verb conjugation is rather simple:

Number Person -ar (tomar) -er (comer) -ir (escribir)

Singular
1 tomo como escribo
2 tomas comes escribes
3 toma come escribe

Plural
1 tomamos comemos escribimos
2 tom�ais com�eis escrib��s
3 toman comen escriben

There are several morphonetic alterations:

In +1+Sg g becomes j before -er : emerger → emerjo.
In +1+Sg c turns to zc before -er/-ir and after vowel:
conducir → conduzco,
agradecer → agradezco (though mecer → mezo).

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Model alterations
Spanish verb conjugation is rather simple.
But model vowel alterations exist:

Number Person
-o-/-ue- -e-/-ie- -e-/-i-
contar sentir servir

Singular
1 cuento siento sirvo
2 cuentas sientes sirves
3 cuenta siente sirve

Plural
1 contamos sentimos servimos
2 cont�ais sent��s serv��s
3 cuentan sienten sirven

These classes include much more verbs:

-o-/-ue-: morir, dormir, soler, so�nar, . . .
-e-/-ie-: pensar, entender, perder, preferir, . . .
-e-/-i-: pedir, vestir, elegir, expedir, . . .

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Model alterations
Spanish verb conjugation is rather simple.
But model vowel alterations exist:

Number Person
-o-/-ue- -e-/-ie- -e-/-i-
contar sentir servir

Singular
1 cuento siento sirvo
2 cuentas sientes sirves
3 cuenta siente sirve

Plural
1 contamos sentimos servimos
2 cont�ais sent��s serv��s
3 cuentan sienten sirven

These classes include much more verbs:

-o-/-ue-: morir, dormir, soler, so�nar, . . .
-e-/-ie-: pensar, entender, perder, preferir, . . .

-e-/-i-: pedir, vestir, elegir, expedir, . . .

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Model alterations
Spanish verb conjugation is rather simple.
But model vowel alterations exist:

Number Person
-o-/-ue- -e-/-ie- -e-/-i-
contar sentir servir

Singular
1 cuento siento sirvo
2 cuentas sientes sirves
3 cuenta siente sirve

Plural
1 contamos sentimos servimos
2 cont�ais sent��s serv��s
3 cuentan sienten sirven

These classes include much more verbs:

-o-/-ue-: morir, dormir, soler, so�nar, . . .
-e-/-ie-: pensar, entender, perder, preferir, . . .
-e-/-i-: pedir, vestir, elegir, expedir, . . .

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Model alterations

Also Spanish has some irregular verbs:

Number Person estar ser haber

Singular
1 estoy soy he
2 est�as eres has
3 est�a es ha

Plural
1 estamos somos hemos
2 est�ais sois hab�eis
3 est�an son han

There are some more irregular verbs: decir, dar, ver, . . .
Some verbs just have irregular +1+Sg forms:

traer → traigo (also caer).
valer → valgo (also salir, poner).
saber → s�e, caber → quepo.

How to model that all properly?

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Model alterations

Also Spanish has some irregular verbs:

Number Person estar ser haber

Singular
1 estoy soy he
2 est�as eres has
3 est�a es ha

Plural
1 estamos somos hemos
2 est�ais sois hab�eis
3 est�an son han

There are some more irregular verbs: decir, dar, ver, . . .
Some verbs just have irregular +1+Sg forms:

traer → traigo (also caer).
valer → valgo (also salir, poner).
saber → s�e, caber → quepo.

How to model that all properly?

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Model alterations

Also Spanish has some irregular verbs:

Number Person estar ser haber

Singular
1 estoy soy he
2 est�as eres has
3 est�a es ha

Plural
1 estamos somos hemos
2 est�ais sois hab�eis
3 est�an son han

There are some more irregular verbs: decir, dar, ver, . . .
Some verbs just have irregular +1+Sg forms:

traer → traigo (also caer).
valer → valgo (also salir, poner).
saber → s�e, caber → quepo.

How to model that all properly?

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Regular model
First, model regular verbs (with regular phonetic alterations):

1 de�ne Vowel e | i | �e| ��| a | u | o | �a| �u| �o;
2 de�ne Cons b | c | d | f | g | h | j | k | l | m | n | �n| p | q | r | s | t | v | x | y | z ;
3 de�ne Letter Cons | Vowel ;
4 de�ne Stem Letter∗ Vowel Letter∗ ;
5 de�ne InfSu�x [a | i | e] r ;
6 de�ne In�nitive Stem InfSu�x ;
7 de�ne Number "+Sg" | "+Pl" ;
8 de�ne Person "+1" | "+2" | "+3" ;
9 de�ne Input In�nitive Number Person;

10 ## phonetic alterations
11 de�ne ChangeEndCons1 c −> z c || Vowel _ [e | i] r "+Sg" "+1";
12 de�ne ChangeEndCons2 c −> z || [Cons − z] _ [e | i] r "+Sg" "+1" ;
13 de�ne ChangeEndCons3 g −> j, g u −> g, q u −> c || _ [e | i] r "+Sg" "+1" ;
14 de�ne UIR [..] −> y || [Letter − q] u _ i r ["+Sg" | "+Pl" "+3"] ;
15 de�ne ChangeEnd ChangeEndCons1 .o. ChangeEndCons2 .o. ChangeEndCons3 .o. UIR ;
16 ## endings
17 de�ne ieInfSu�x [i | e] r ;
18 de�ne PresEnding1s InfSu�x −> o || _ "+Sg" "+1" ;
19 de�ne PresEnding2s a r −> a s, ieInfSu�x −> e s || _ "+Sg" "+2" ;
20 de�ne PresEnding3s a r −> a, ieInfSu�x −> e || _ "+Sg" "+3" ;
21 de�ne PresEnding1p r −> m o s || _ "+Pl" "+1" ;
22 de�ne PresEnding2p a r −> �ai s, e r −> �ei s, i r −> ��s || _ "+Pl" "+2" ;
23 de�ne PresEnding3p a r −> a n, ieInfSu�x −> e n || _ "+Pl" "+3" ;
24 de�ne PresEnding PresEnding1s .o. PresEnding2s .o. PresEnding3s .o. PresEnding1p .o. PresEnding2p .o. PresEnding3p ;
25 ## combining all
26 de�ne CleanUp [Person | Number] −> "" || _ ;
27 de�ne Regular [Input .o. ChangeEnd .o. PresEnding] ;
28 de�ne Grammar [IrregularForm .P. Regular] .o. CleanUp ;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Lexicon �le
Exceptions are listed in the lexicon �le:

Multichar_Symbols +Sg +Pl +1 +2 +3

LEXICON Root

Verb ; Sg1Verb ;

LEXICON Verb

estar+Sg+1:estoy #;
estar+Sg+2:est�as #;
estar+Sg+3:est�a #;
estar+Pl+3:est�an #;

ser+Sg+1:soy #;
ser+Sg+2:eres #;
ser+Sg+3:es #;
ser+Pl+1:somos #;
ser+Pl+2:sois #;
ser+Pl+3:son #;

haber+Sg+1:he #;
haber+Sg+2:has #;
haber+Sg+3:has #;
haber+Pl+3:han #;

LEXICON Sg1Verb

saber+Sg+1:s�e #;
traer+Sg+1:traigo #;
caer+Sg+1:caigo #;
caber+Sg+1:quepo #;
poner+Sg+1:pongo #;
valer+Sg+1:valgo #;
salir+Sg+1:salgo #;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

Regular model: application

$ flookup -i -w "" spanish.bin < spanish_test.in

caer+Sg+1 caigo

ser+Pl+1 somos

ser+Pl+2 sois

ser+Sg+1 soy

estar+Pl+3 est�an

estar+Sg+2 est�as

estar+Sg+3 est�a

hablar+Sg+1 hablo

hablar+Sg+2 hablas

cantar+Pl+1 cantamos

comer+Sg+3 come

correr+Pl+2 corr�eis

vender+Pl+3 venden

escribir+Sg+2 escribes

surgir+Pl+1 surgimos

destruir+Pl+3 destruyen

instruir+Sg+2 instruyes

cojer+Sg+1 cojo

distinguir+Sg+1 distingo

conducir+Sg+1 conduzco

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

Stem alterations occur simultaneously in several forms (all sin-
gular and +Pl+3).
It is inconvenient to write in the lexicon all alterations.

Moreover, after stem alterations stems are subject to usual
phonological rules:

elegir+Sg+1 → elijo
seguir+Sg+1 → sigo (not *siguo).

In stem alteration branch we compose stem alteration with
phonological changes.
In regular branch only phonological changes are applied.
This is lenient composition:

X .O.Y = (X .o.Y).P.Y

But we use priority union instead.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

Stem alterations occur simultaneously in several forms (all sin-
gular and +Pl+3).
It is inconvenient to write in the lexicon all alterations.
Moreover, after stem alterations stems are subject to usual
phonological rules:

elegir+Sg+1 → elijo
seguir+Sg+1 → sigo (not *siguo).

In stem alteration branch we compose stem alteration with
phonological changes.
In regular branch only phonological changes are applied.
This is lenient composition:

X .O.Y = (X .o.Y).P.Y

But we use priority union instead.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

Stem alterations occur simultaneously in several forms (all sin-
gular and +Pl+3).
It is inconvenient to write in the lexicon all alterations.
Moreover, after stem alterations stems are subject to usual
phonological rules:

elegir+Sg+1 → elijo
seguir+Sg+1 → sigo (not *siguo).

In stem alteration branch we compose stem alteration with
phonological changes.
In regular branch only phonological changes are applied.

This is lenient composition:

X .O.Y = (X .o.Y).P.Y

But we use priority union instead.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

Stem alterations occur simultaneously in several forms (all sin-
gular and +Pl+3).
It is inconvenient to write in the lexicon all alterations.
Moreover, after stem alterations stems are subject to usual
phonological rules:

elegir+Sg+1 → elijo
seguir+Sg+1 → sigo (not *siguo).

In stem alteration branch we compose stem alteration with
phonological changes.
In regular branch only phonological changes are applied.
This is lenient composition:

X .O.Y = (X .o.Y).P.Y

But we use priority union instead.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

Stem alterations occur simultaneously in several forms (all sin-
gular and +Pl+3).
It is inconvenient to write in the lexicon all alterations.
Moreover, after stem alterations stems are subject to usual
phonological rules:

elegir+Sg+1 → elijo
seguir+Sg+1 → sigo (not *siguo).

In stem alteration branch we compose stem alteration with
phonological changes.
In regular branch only phonological changes are applied.
This is lenient composition:

X .O.Y = (X .o.Y).P.Y

But we use priority union instead.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

We have two alteration branches:

First inserts -(i)g- before ending of exceptional +Sg+1 forms:
(caer+Sg+1 → caigo, salir+Sg+1 → salgo).
Second deals with stem vowel change (-o-/-ue-, -e-/-ie-, -e-/-i-).

First branch has higher priority: (tener+Sg+1 → tengo, but
tener+Sg+2 → tienes, tener+Sg+3 → tiene).

Not to deal with pseudoforms as *traiger we replace ending with
special symbol:

!!!�rst_stem.lexc!!!
LEXICON Root
traer:traiG%!Ending2%! #;
salir:salG%!Ending3%! #;

Analogously for second branch (dorm- → duerm-):
!!!second_stem.lexc!!!
LEXICON Root
tener:tien%!Ending2%! #;
pedir:pid%!Ending2%! #;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

We have two alteration branches:

First inserts -(i)g- before ending of exceptional +Sg+1 forms:
(caer+Sg+1 → caigo, salir+Sg+1 → salgo).
Second deals with stem vowel change (-o-/-ue-, -e-/-ie-, -e-/-i-).

First branch has higher priority: (tener+Sg+1 → tengo, but
tener+Sg+2 → tienes, tener+Sg+3 → tiene).
Not to deal with pseudoforms as *traiger we replace ending with
special symbol:

!!!�rst_stem.lexc!!!
LEXICON Root
traer:traiG%!Ending2%! #;
salir:salG%!Ending3%! #;

Analogously for second branch (dorm- → duerm-):
!!!second_stem.lexc!!!
LEXICON Root
tener:tien%!Ending2%! #;
pedir:pid%!Ending2%! #;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

We have two alteration branches:

First inserts -(i)g- before ending of exceptional +Sg+1 forms:
(caer+Sg+1 → caigo, salir+Sg+1 → salgo).
Second deals with stem vowel change (-o-/-ue-, -e-/-ie-, -e-/-i-).

First branch has higher priority: (tener+Sg+1 → tengo, but
tener+Sg+2 → tienes, tener+Sg+3 → tiene).
Not to deal with pseudoforms as *traiger we replace ending with
special symbol:

!!!�rst_stem.lexc!!!
LEXICON Root
traer:traiG%!Ending2%! #;
salir:salG%!Ending3%! #;

Analogously for second branch (dorm- → duerm-):
!!!second_stem.lexc!!!
LEXICON Root
tener:tien%!Ending2%! #;
pedir:pid%!Ending2%! #;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

Verb endings are replaced by markers (rules are changed accordingly):

de�ne Marker [a r] −> "!Ending1!" , [e r] −> "!Ending2!" ,
[i r] −> "!Ending3!" || _ Number ;

Stem transformations are read from lexicons:

lexicon for stem changes
read lexc �rst_stem.lexc
de�ne FirstStem ;
de�ne FirstStemChange FirstStem "+Sg" "+1" ;
read lexc second_stem.lexc
de�ne SecondStem ;
de�ne SecondStemChange SecondStem ["+Sg" ? | "+Pl" "+3"] ;
de�ne IrregularStemChange FirstStemChange .P. SecondStemChange ;

In the end everything is combined by priority union:

de�ne Regular [Input .o. [IrregularStemChange .P. Marker] .o. ChangeEnd .o.
PresEnding] ;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

Verb endings are replaced by markers (rules are changed accordingly):

de�ne Marker [a r] −> "!Ending1!" , [e r] −> "!Ending2!" ,
[i r] −> "!Ending3!" || _ Number ;

Stem transformations are read from lexicons:

lexicon for stem changes
read lexc �rst_stem.lexc
de�ne FirstStem ;
de�ne FirstStemChange FirstStem "+Sg" "+1" ;
read lexc second_stem.lexc
de�ne SecondStem ;
de�ne SecondStemChange SecondStem ["+Sg" ? | "+Pl" "+3"] ;
de�ne IrregularStemChange FirstStemChange .P. SecondStemChange ;

In the end everything is combined by priority union:

de�ne Regular [Input .o. [IrregularStemChange .P. Marker] .o. ChangeEnd .o.
PresEnding] ;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

Stem alterations work indeed:

$ flookup -i -w "" spanish_full.bin < spanish_stem.in

detraer+Sg+1 detraigo

tener+Pl+1 tenemos

tener+Pl+2 ten�eis

tener+Sg+1 tengo

dormir+Pl+3 duermen

dormir+Sg+2 duermes

hacer+Sg+1 hago

hacer+Sg+3 hace

pensar+Sg+1 pienso

pensar+Sg+2 piensas

pensar+Pl+1 pensamos

morir+Sg+3 muere

morir+Pl+2 mor��s

pedir+Pl+3 piden

pedir+Sg+2 pides

preferir+Pl+1 preferimos

preferir+Pl+3 prefieren

preferir+Sg+1 prefiero

decir+Sg+3 dice

preferir+Sg+1 prefiero

Should be added: derivatonal pre�xes.

tener → contener, mantener, detener, . . .
hacer → rehacer, deshacer, . . .

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

Stem alterations work indeed:

$ flookup -i -w "" spanish_full.bin < spanish_stem.in

detraer+Sg+1 detraigo

tener+Pl+1 tenemos

tener+Pl+2 ten�eis

tener+Sg+1 tengo

dormir+Pl+3 duermen

dormir+Sg+2 duermes

hacer+Sg+1 hago

hacer+Sg+3 hace

pensar+Sg+1 pienso

pensar+Sg+2 piensas

pensar+Pl+1 pensamos

morir+Sg+3 muere

morir+Pl+2 mor��s

pedir+Pl+3 piden

pedir+Sg+2 pides

preferir+Pl+1 preferimos

preferir+Pl+3 prefieren

preferir+Sg+1 prefiero

decir+Sg+3 dice

preferir+Sg+1 prefiero

Should be added: derivatonal pre�xes.

tener → contener, mantener, detener, . . .
hacer → rehacer, deshacer, . . .

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: fusion

+1+Sg form once more:

In�nitive +1+Sg gerund

partir parto partiendo
imbuir imbuyo imbuyendo
destruir destruyo destruyendo
delinquir delinco delinquiendo
distinguir distingo distinguiendo
coger cojo cogiendo
agradecer agradezco agradeciendo
mecer mezo meciendo

Personal ending fuses with the stem on morpheme boundary.
That could be carefully modeled with context �phonetic� rules.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: fusion

+1+Sg form once more:

In�nitive +1+Sg gerund

partir parto partiendo
imbuir imbuyo imbuyendo
destruir destruyo destruyendo
delinquir delinco delinquiendo
distinguir distingo distinguiendo
coger cojo cogiendo
agradecer agradezco agradeciendo
mecer mezo meciendo

Personal ending fuses with the stem on morpheme boundary.
That could be carefully modeled with context �phonetic� rules.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: root-and-pattern morphology

So far morpheme structure was linear.

That is not true for Semitic languages (e.g. Arabic):

kataba �(he) wrote+Perf�
kattabat �(she intensively) wrote+Perf�
yaktubu �(he) was written+Imp�
takattibu �(she) was (intensively) written+Imp�

Root k-t-b consists of consonants (usually 3).
Vowels re�ect grammatical information.
Di�erent verb classes have di�erent vowel patterns:

marida �(he became) ill+Perf�
marradat �(she intensively became) ill+Perf�
yamradu �(he) was made ill+Imp�
tamarridu �(she) was (intensively) made ill+Imp�

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: root-and-pattern morphology

So far morpheme structure was linear.
That is not true for Semitic languages (e.g. Arabic):

kataba �(he) wrote+Perf�
kattabat �(she intensively) wrote+Perf�
yaktubu �(he) was written+Imp�
takattibu �(she) was (intensively) written+Imp�

Root k-t-b consists of consonants (usually 3).
Vowels re�ect grammatical information.
Di�erent verb classes have di�erent vowel patterns:

marida �(he became) ill+Perf�
marradat �(she intensively became) ill+Perf�
yamradu �(he) was made ill+Imp�
tamarridu �(she) was (intensively) made ill+Imp�

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: root-and-pattern morphology

So far morpheme structure was linear.
That is not true for Semitic languages (e.g. Arabic):

kataba �(he) wrote+Perf�
kattabat �(she intensively) wrote+Perf�
yaktubu �(he) was written+Imp�
takattibu �(she) was (intensively) written+Imp�

Root k-t-b consists of consonants (usually 3).
Vowels re�ect grammatical information.

Di�erent verb classes have di�erent vowel patterns:

marida �(he became) ill+Perf�
marradat �(she intensively became) ill+Perf�
yamradu �(he) was made ill+Imp�
tamarridu �(she) was (intensively) made ill+Imp�

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: root-and-pattern morphology

So far morpheme structure was linear.
That is not true for Semitic languages (e.g. Arabic):

kataba �(he) wrote+Perf�
kattabat �(she intensively) wrote+Perf�
yaktubu �(he) was written+Imp�
takattibu �(she) was (intensively) written+Imp�

Root k-t-b consists of consonants (usually 3).
Vowels re�ect grammatical information.
Di�erent verb classes have di�erent vowel patterns:

marida �(he became) ill+Perf�
marradat �(she intensively became) ill+Perf�
yamradu �(he) was made ill+Imp�
tamarridu �(she) was (intensively) made ill+Imp�

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: simple example

We want to model something like:

〈stem〉〈Type〉〈Voice〉〈Aspect〉〈Person〉〈Gender〉 7→ 〈wordForm〉

Possible values:

〈Type〉 ∈ {I , II},
〈Voice〉 ∈ {Act,Pass},
〈Aspect〉 ∈ {Perf, Imperf},
〈Person〉 ∈ {3},
〈Gender〉 ∈ {M,F}.

16 variants.
We model only one class (of the verb KTB �to write�).

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: simple example

We want to model something like:

〈stem〉〈Type〉〈Voice〉〈Aspect〉〈Person〉〈Gender〉 7→ 〈wordForm〉

Possible values:

〈Type〉 ∈ {I , II},
〈Voice〉 ∈ {Act,Pass},
〈Aspect〉 ∈ {Perf, Imperf},
〈Person〉 ∈ {3},
〈Gender〉 ∈ {M,F}.

16 variants.

We model only one class (of the verb KTB �to write�).

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: simple example

We want to model something like:

〈stem〉〈Type〉〈Voice〉〈Aspect〉〈Person〉〈Gender〉 7→ 〈wordForm〉

Possible values:

〈Type〉 ∈ {I , II},
〈Voice〉 ∈ {Act,Pass},
〈Aspect〉 ∈ {Perf, Imperf},
〈Person〉 ∈ {3},
〈Gender〉 ∈ {M,F}.

16 variants.
We model only one class (of the verb KTB �to write�).

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: word formation

Word formation in Arabic (A. A. Zalizniak's handout):
Stem variants:

Type Pattern Example
I (basic) K-T-B kataba �to write�
II (intensive) K-TT-B kattaba �to write a lot�

Pre�x/su�x variants:

Person+Gender Perf. su�x Imp. pre�x-su�x
+3+Masc -a ya- -u
+3+Fem -at ta- -u

Vowel �ller variants:
Aspect Voice Pre�x Filler I Filler II
Perfect Active a-a a-a
Perfect Passive u-i u-i
Imperfect Active ya- ∅-u a-i
Imperfect Passive yu- ∅-a a-a

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: input

Input format:

de�ne Vowel [a | i | u];
de�ne Consonant [k | t | b | z | h | r | s | f | m | d | n | y];
de�ne Letter [Vowel | Consonant];
de�ne Stem Consonant Consonant Consonant;
de�ne Type ["+I" | "+II"];
de�ne Voice ["+Act" | "+Pass"];
de�ne Aspect ["+Perf" | "+Imperf"];
de�ne Person "+3";
de�ne Gender ["+M" | "+F"];
de�ne Input Stem Type Voice Aspect Person Gender;

Vowel positions are marked with digits:

de�ne 0Insertion [..] −> "0" || .#. _ ;
de�ne 1Insertion [..] −> "1" || "0" Consonant _ ;
de�ne 2Insertion [..] −> "2" || "1" Consonant _ ;
de�ne 3Insertion [..] −> "3" || "2" Consonant _ ;
de�ne PosInsertion 0Insertion .o. 1Insertion .o. 2Insertion .o. 3Insertion;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: input

Input format:

de�ne Vowel [a | i | u];
de�ne Consonant [k | t | b | z | h | r | s | f | m | d | n | y];
de�ne Letter [Vowel | Consonant];
de�ne Stem Consonant Consonant Consonant;
de�ne Type ["+I" | "+II"];
de�ne Voice ["+Act" | "+Pass"];
de�ne Aspect ["+Perf" | "+Imperf"];
de�ne Person "+3";
de�ne Gender ["+M" | "+F"];
de�ne Input Stem Type Voice Aspect Person Gender;

Vowel positions are marked with digits:

de�ne 0Insertion [..] −> "0" || .#. _ ;
de�ne 1Insertion [..] −> "1" || "0" Consonant _ ;
de�ne 2Insertion [..] −> "2" || "1" Consonant _ ;
de�ne 3Insertion [..] −> "3" || "2" Consonant _ ;
de�ne PosInsertion 0Insertion .o. 1Insertion .o. 2Insertion .o. 3Insertion;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: �llers

Doubling second consonant of intensive:

de�ne CheckTypeI ?∗ "+I" ?∗;
de�ne CheckTypeII ?∗ "+II" ?∗;
de�ne TypeIIDuplication k −> [k k], b −> [b b], t −> [t t], z −> [z z], h

−> [h h], r −> [r r], s −> [s s], f −> [f f], m −> [m m], d −> [d d], n
−> [n n] || _ "2";

de�ne StemProcessing [CheckTypeI] | [CheckTypeII .o. TypeIIDuplication];

De�ning �llers:

de�ne aaFill "1" −> a, "2" −> a;
de�ne aiFill "1" −> a, "2" −> i;
de�ne uiFill "1" −> u, "2" −> i;
de�ne 0aFill "1" −> [], "2"−> a;
de�ne 0uFill "1" −> [], "2"−> u;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: �llers

Doubling second consonant of intensive:

de�ne CheckTypeI ?∗ "+I" ?∗;
de�ne CheckTypeII ?∗ "+II" ?∗;
de�ne TypeIIDuplication k −> [k k], b −> [b b], t −> [t t], z −> [z z], h

−> [h h], r −> [r r], s −> [s s], f −> [f f], m −> [m m], d −> [d d], n
−> [n n] || _ "2";

de�ne StemProcessing [CheckTypeI] | [CheckTypeII .o. TypeIIDuplication];

De�ning �llers:

de�ne aaFill "1" −> a, "2" −> a;
de�ne aiFill "1" −> a, "2" −> i;
de�ne uiFill "1" −> u, "2" −> i;
de�ne 0aFill "1" −> [], "2"−> a;
de�ne 0uFill "1" −> [], "2"−> u;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: selecting the rule

Exhaustive search for appropriate rule:
de�ne PerfectActiveFill aaFill;
de�ne ImperfectActiveFill [CheckTypeI .o. 0uFill] | [CheckTypeII .o. aiFill];
de�ne ActiveFill [CheckPerf .o. PerfectActiveFill] | [CheckImperf .o.

ImperfectActiveFill];
de�ne PerfectPassiveFill uiFill;
de�ne ImperfectPassiveFill [CheckTypeI .o. 0aFill] | [CheckTypeII .o. aaFill];
de�ne PassiveFill [CheckPerf .o. PerfectPassiveFill] | [CheckImperf .o.

ImperfectPassiveFill];
de�ne Fill [CheckPass .o. PassiveFill] | [CheckAct .o. ActiveFill] ;

The same for pre�xes (0 marker):
de�ne 0Pre�x "0" −> [];
de�ne yaPre�x "0" −> y a;
de�ne yuPre�x "0" −> y u;

de�ne taPre�x "0" −> t a;
de�ne tuPre�x "0" −> t u;

de�ne PerfectPre�x 0Pre�x;
de�ne ImperfectActivePre�x [CheckMasc .o. yaPre�x] | [CheckFem .o. taPre�x] ;
de�ne ImperfectPassivePre�x [CheckMasc .o. yuPre�x] | [CheckFem .o. tuPre�x] ;
de�ne ImperfectPre�x [CheckAct .o. ImperfectActivePre�x] | [CheckPass .o.

ImperfectPassivePre�x] ;
de�ne Pre�x [CheckPerf .o. PerfectPre�x] | [CheckImperf .o. ImperfectPre�x] ;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: selecting the rule

Exhaustive search for appropriate rule:
de�ne PerfectActiveFill aaFill;
de�ne ImperfectActiveFill [CheckTypeI .o. 0uFill] | [CheckTypeII .o. aiFill];
de�ne ActiveFill [CheckPerf .o. PerfectActiveFill] | [CheckImperf .o.

ImperfectActiveFill];
de�ne PerfectPassiveFill uiFill;
de�ne ImperfectPassiveFill [CheckTypeI .o. 0aFill] | [CheckTypeII .o. aaFill];
de�ne PassiveFill [CheckPerf .o. PerfectPassiveFill] | [CheckImperf .o.

ImperfectPassiveFill];
de�ne Fill [CheckPass .o. PassiveFill] | [CheckAct .o. ActiveFill] ;

The same for pre�xes (0 marker):
de�ne 0Pre�x "0" −> [];
de�ne yaPre�x "0" −> y a;
de�ne yuPre�x "0" −> y u;

de�ne taPre�x "0" −> t a;
de�ne tuPre�x "0" −> t u;

de�ne PerfectPre�x 0Pre�x;
de�ne ImperfectActivePre�x [CheckMasc .o. yaPre�x] | [CheckFem .o. taPre�x] ;
de�ne ImperfectPassivePre�x [CheckMasc .o. yuPre�x] | [CheckFem .o. tuPre�x] ;
de�ne ImperfectPre�x [CheckAct .o. ImperfectActivePre�x] | [CheckPass .o.

ImperfectPassivePre�x] ;
de�ne Pre�x [CheckPerf .o. PerfectPre�x] | [CheckImperf .o. ImperfectPre�x] ;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: selecting the rule

Processing the su�xes (3 marker):

de�ne ImperfectSu�x "3" −> u || _ Type;
de�ne PerfectMascSu�x "3" −> a || _ Type;
de�ne PerfectFemSu�x "3" −> a t || _ Type;
de�ne PerfectSu�x [CheckMasc .o. PerfectMascSu�x] | [CheckFem .o.

PerfectFemSu�x] ;
de�ne Su�x [CheckPerf .o. PerfectSu�x] | [CheckImperf .o. ImperfectSu�x];

Combining all stages together:

de�ne Cleanup Type | Voice | Aspect | Person | Gender −> [] ;
de�ne Grammar Input .o. PosInsertion .o. StemProcessing .o. Fill .o. Pre�x .o.

Su�x .o. Cleanup;

Real Arabic morphology is much more complex.
But it was one of the �rst languages to obtain a transducer grammar
(Beesley, 1990).

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: selecting the rule

Processing the su�xes (3 marker):

de�ne ImperfectSu�x "3" −> u || _ Type;
de�ne PerfectMascSu�x "3" −> a || _ Type;
de�ne PerfectFemSu�x "3" −> a t || _ Type;
de�ne PerfectSu�x [CheckMasc .o. PerfectMascSu�x] | [CheckFem .o.

PerfectFemSu�x] ;
de�ne Su�x [CheckPerf .o. PerfectSu�x] | [CheckImperf .o. ImperfectSu�x];

Combining all stages together:

de�ne Cleanup Type | Voice | Aspect | Person | Gender −> [] ;
de�ne Grammar Input .o. PosInsertion .o. StemProcessing .o. Fill .o. Pre�x .o.

Su�x .o. Cleanup;

Real Arabic morphology is much more complex.
But it was one of the �rst languages to obtain a transducer grammar
(Beesley, 1990).

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: selecting the rule

Processing the su�xes (3 marker):

de�ne ImperfectSu�x "3" −> u || _ Type;
de�ne PerfectMascSu�x "3" −> a || _ Type;
de�ne PerfectFemSu�x "3" −> a t || _ Type;
de�ne PerfectSu�x [CheckMasc .o. PerfectMascSu�x] | [CheckFem .o.

PerfectFemSu�x] ;
de�ne Su�x [CheckPerf .o. PerfectSu�x] | [CheckImperf .o. ImperfectSu�x];

Combining all stages together:

de�ne Cleanup Type | Voice | Aspect | Person | Gender −> [] ;
de�ne Grammar Input .o. PosInsertion .o. StemProcessing .o. Fill .o. Pre�x .o.

Su�x .o. Cleanup;

Real Arabic morphology is much more complex.

But it was one of the �rst languages to obtain a transducer grammar
(Beesley, 1990).

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: selecting the rule

Processing the su�xes (3 marker):

de�ne ImperfectSu�x "3" −> u || _ Type;
de�ne PerfectMascSu�x "3" −> a || _ Type;
de�ne PerfectFemSu�x "3" −> a t || _ Type;
de�ne PerfectSu�x [CheckMasc .o. PerfectMascSu�x] | [CheckFem .o.

PerfectFemSu�x] ;
de�ne Su�x [CheckPerf .o. PerfectSu�x] | [CheckImperf .o. ImperfectSu�x];

Combining all stages together:

de�ne Cleanup Type | Voice | Aspect | Person | Gender −> [] ;
de�ne Grammar Input .o. PosInsertion .o. StemProcessing .o. Fill .o. Pre�x .o.

Su�x .o. Cleanup;

Real Arabic morphology is much more complex.
But it was one of the �rst languages to obtain a transducer grammar
(Beesley, 1990).

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Morphological tagging: example

The main task of computational morphology: morphological
tagging.
Tagging assigns morphological labels to words.

DT JJ NN VBD DT JJ NN
The baseball player made a home run

The most di�cult problem: homonymy.

PRP VB RB TO VB NN
I run home to play baseball

Some words have several tags:

baseball : NN, JJ
run: VB, VBN, NN
home: NN, JJ, RB

How to discriminate between possible variants?
Other problem: tagging of unknown words.

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Morphological tagging: example

The main task of computational morphology: morphological
tagging.
Tagging assigns morphological labels to words.

DT JJ NN VBD DT JJ NN
The baseball player made a home run

The most di�cult problem: homonymy.

PRP VB RB TO VB NN
I run home to play baseball

Some words have several tags:

baseball : NN, JJ
run: VB, VBN, NN
home: NN, JJ, RB

How to discriminate between possible variants?
Other problem: tagging of unknown words.

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Morphological tagging: example

The main task of computational morphology: morphological
tagging.
Tagging assigns morphological labels to words.

DT JJ NN VBD DT JJ NN
The baseball player made a home run

The most di�cult problem: homonymy.

PRP VB RB TO VB NN
I run home to play baseball

Some words have several tags:

baseball : NN, JJ
run: VB, VBN, NN
home: NN, JJ, RB

How to discriminate between possible variants?
Other problem: tagging of unknown words.

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Morphological tagging: example

The main task of computational morphology: morphological
tagging.
Tagging assigns morphological labels to words.

DT JJ NN VBD DT JJ NN
The baseball player made a home run

The most di�cult problem: homonymy.

PRP VB RB TO VB NN
I run home to play baseball

Some words have several tags:

baseball : NN, JJ
run: VB, VBN, NN
home: NN, JJ, RB

How to discriminate between possible variants?

Other problem: tagging of unknown words.

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Morphological tagging: example

The main task of computational morphology: morphological
tagging.
Tagging assigns morphological labels to words.

DT JJ NN VBD DT JJ NN
The baseball player made a home run

The most di�cult problem: homonymy.

PRP VB RB TO VB NN
I run home to play baseball

Some words have several tags:

baseball : NN, JJ
run: VB, VBN, NN
home: NN, JJ, RB

How to discriminate between possible variants?
Other problem: tagging of unknown words.

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Morphological tagging: variants

Two variants of morphological tagging.
Coarse (POS-tagging): only part-of-speech labels (about 10−15
labels).

baseball NN

Fine-grained: full morphological description.
Feature-based description:

kupila "(she) bought" VERB Mood=Ind, Tense=Past,
Aspect=Perf, Voice=Active,
Number=Sing, Gender=Fem

Positional description:

kupila Vmis-sfa-e-
For English: no coarse tags, extended set of POS-tags.
For in�ectional languages: large number of complex tags (up
to 1000 for Russian or Czech).

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Morphological tagging: variants

Two variants of morphological tagging.
Coarse (POS-tagging): only part-of-speech labels (about 10−15
labels).

baseball NN

Fine-grained: full morphological description.
Feature-based description:

kupila "(she) bought" VERB Mood=Ind, Tense=Past,
Aspect=Perf, Voice=Active,
Number=Sing, Gender=Fem

Positional description:

kupila Vmis-sfa-e-
For English: no coarse tags, extended set of POS-tags.
For in�ectional languages: large number of complex tags (up
to 1000 for Russian or Czech).

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Morphological tagging: variants

Two variants of morphological tagging.
Coarse (POS-tagging): only part-of-speech labels (about 10−15
labels).

baseball NN

Fine-grained: full morphological description.
Feature-based description:

kupila "(she) bought" VERB Mood=Ind, Tense=Past,
Aspect=Perf, Voice=Active,
Number=Sing, Gender=Fem

Positional description:

kupila Vmis-sfa-e-

For English: no coarse tags, extended set of POS-tags.
For in�ectional languages: large number of complex tags (up
to 1000 for Russian or Czech).

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Morphological tagging: variants

Two variants of morphological tagging.
Coarse (POS-tagging): only part-of-speech labels (about 10−15
labels).

baseball NN

Fine-grained: full morphological description.
Feature-based description:

kupila "(she) bought" VERB Mood=Ind, Tense=Past,
Aspect=Perf, Voice=Active,
Number=Sing, Gender=Fem

Positional description:

kupila Vmis-sfa-e-
For English: no coarse tags, extended set of POS-tags.

For in�ectional languages: large number of complex tags (up
to 1000 for Russian or Czech).

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Morphological tagging: variants

Two variants of morphological tagging.
Coarse (POS-tagging): only part-of-speech labels (about 10−15
labels).

baseball NN

Fine-grained: full morphological description.
Feature-based description:

kupila "(she) bought" VERB Mood=Ind, Tense=Past,
Aspect=Perf, Voice=Active,
Number=Sing, Gender=Fem

Positional description:

kupila Vmis-sfa-e-
For English: no coarse tags, extended set of POS-tags.
For in�ectional languages: large number of complex tags (up
to 1000 for Russian or Czech).

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Morphological tagging standards

Oldest standard � Penn treebank (Marcus et al., 1993). 36 POS-
tags for English with no inner structure (https://www.ling.
upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html):

12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural

For in�ectional languages, two basic approaches:

Positional tagset (Multext-East project for Slavic languages).
Feature-based tagset (Universal Dependencies project).

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Morphological tagging standards

Oldest standard � Penn treebank (Marcus et al., 1993). 36 POS-
tags for English with no inner structure (https://www.ling.
upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html):

12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural

For in�ectional languages, two basic approaches:

Positional tagset (Multext-East project for Slavic languages).

Feature-based tagset (Universal Dependencies project).

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Morphological tagging standards

Oldest standard � Penn treebank (Marcus et al., 1993). 36 POS-
tags for English with no inner structure (https://www.ling.
upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html):

12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural

For in�ectional languages, two basic approaches:

Positional tagset (Multext-East project for Slavic languages).
Feature-based tagset (Universal Dependencies project).

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Positional tagsets

Used in Multext-East project for Slavic languages
(http://nl.ijs.si/ME/).
Each tag is a sequence of letters.

First capital letter stands for part-of-speech
(N � noun, V � verb, etc.).
For most Slavic languages there are 13 basic POS-tags.
Other smallcase letters re�ect features:

Ncmsny common noun, masculine, singular,
neuter, animate (yes).

Vmis-sfa-e- main verb, indicative, past(s), singular,
feminine, active voice, perfect (e)

Disadvantage: tags are language- and speci�cation-dependent.

http://nl.ijs.si/ME/

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Positional tagsets

Used in Multext-East project for Slavic languages
(http://nl.ijs.si/ME/).
Each tag is a sequence of letters.
First capital letter stands for part-of-speech
(N � noun, V � verb, etc.).
For most Slavic languages there are 13 basic POS-tags.

Other smallcase letters re�ect features:

Ncmsny common noun, masculine, singular,
neuter, animate (yes).

Vmis-sfa-e- main verb, indicative, past(s), singular,
feminine, active voice, perfect (e)

Disadvantage: tags are language- and speci�cation-dependent.

http://nl.ijs.si/ME/

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Positional tagsets

Used in Multext-East project for Slavic languages
(http://nl.ijs.si/ME/).
Each tag is a sequence of letters.
First capital letter stands for part-of-speech
(N � noun, V � verb, etc.).
For most Slavic languages there are 13 basic POS-tags.
Other smallcase letters re�ect features:

Ncmsny common noun, masculine, singular,
neuter, animate (yes).

Vmis-sfa-e- main verb, indicative, past(s), singular,
feminine, active voice, perfect (e)

Disadvantage: tags are language- and speci�cation-dependent.

http://nl.ijs.si/ME/

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Positional tagsets

Used in Multext-East project for Slavic languages
(http://nl.ijs.si/ME/).
Each tag is a sequence of letters.
First capital letter stands for part-of-speech
(N � noun, V � verb, etc.).
For most Slavic languages there are 13 basic POS-tags.
Other smallcase letters re�ect features:

Ncmsny common noun, masculine, singular,
neuter, animate (yes).

Vmis-sfa-e- main verb, indicative, past(s), singular,
feminine, active voice, perfect (e)

Disadvantage: tags are language- and speci�cation-dependent.

http://nl.ijs.si/ME/

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Feature-based tagsets

Tags are speci�ed accoriding to CONLL-U format
http://universaldependencies.org/format.html.
Each tag has two parts: universal POS-tag (UPOSTAG)
and feature-value description (FEATS).

17 universal POS labels:
ADJ adjective INTJ interjection PUNCT punctuation
ADP adposition NOUN noun SCONJ subordinating

conjunction
ADV adverb NUM numeral SYM symbol
AUX auxiliary PART particle VERB verb
CCONJ coordinating PRON pronoun X other

conjunction
DET determiner PROPN proper noun

21 features: 6 lexical and 15 in�ectional (Gender, Number, etc.).
Is a general standard for corpora in di�erent languages (50 lan-
guages in version 2.0, March, 2017).

http://universaldependencies.org/format.html

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Feature-based tagsets

Tags are speci�ed accoriding to CONLL-U format
http://universaldependencies.org/format.html.
Each tag has two parts: universal POS-tag (UPOSTAG)
and feature-value description (FEATS).
17 universal POS labels:
ADJ adjective INTJ interjection PUNCT punctuation
ADP adposition NOUN noun SCONJ subordinating

conjunction
ADV adverb NUM numeral SYM symbol
AUX auxiliary PART particle VERB verb
CCONJ coordinating PRON pronoun X other

conjunction
DET determiner PROPN proper noun

21 features: 6 lexical and 15 in�ectional (Gender, Number, etc.).
Is a general standard for corpora in di�erent languages (50 lan-
guages in version 2.0, March, 2017).

http://universaldependencies.org/format.html

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Feature-based tagsets

Tags are speci�ed accoriding to CONLL-U format
http://universaldependencies.org/format.html.
Each tag has two parts: universal POS-tag (UPOSTAG)
and feature-value description (FEATS).
17 universal POS labels:
ADJ adjective INTJ interjection PUNCT punctuation
ADP adposition NOUN noun SCONJ subordinating

conjunction
ADV adverb NUM numeral SYM symbol
AUX auxiliary PART particle VERB verb
CCONJ coordinating PRON pronoun X other

conjunction
DET determiner PROPN proper noun

21 features: 6 lexical and 15 in�ectional (Gender, Number, etc.).

Is a general standard for corpora in di�erent languages (50 lan-
guages in version 2.0, March, 2017).

http://universaldependencies.org/format.html

Computational morphology. Day 3. Real-world morphology.

Morphological tagging

Feature-based tagsets

Tags are speci�ed accoriding to CONLL-U format
http://universaldependencies.org/format.html.
Each tag has two parts: universal POS-tag (UPOSTAG)
and feature-value description (FEATS).
17 universal POS labels:
ADJ adjective INTJ interjection PUNCT punctuation
ADP adposition NOUN noun SCONJ subordinating

conjunction
ADV adverb NUM numeral SYM symbol
AUX auxiliary PART particle VERB verb
CCONJ coordinating PRON pronoun X other

conjunction
DET determiner PROPN proper noun

21 features: 6 lexical and 15 in�ectional (Gender, Number, etc.).
Is a general standard for corpora in di�erent languages (50 lan-
guages in version 2.0, March, 2017).

http://universaldependencies.org/format.html

Computational morphology. Day 3. Real-world morphology.

N-gram models

N-gram models: motivation

Morphological tagging seeks for most probable sequence of tags
for given sequence of words.

Formally, for given words w1,N = w1 . . .wN we search for se-
quence of tags t̂1,N = t1 . . . tN with highest probability p(t|w).

t̂ = argmax
t

p(t|w)

But how to calculate the probability p(t|w)?
For now we cannot estimate even p(t).

Computational morphology. Day 3. Real-world morphology.

N-gram models

N-gram models: motivation

Morphological tagging seeks for most probable sequence of tags
for given sequence of words.
Formally, for given words w1,N = w1 . . .wN we search for se-
quence of tags t̂1,N = t1 . . . tN with highest probability p(t|w).

t̂ = argmax
t

p(t|w)

But how to calculate the probability p(t|w)?
For now we cannot estimate even p(t).

Computational morphology. Day 3. Real-world morphology.

N-gram models

N-gram models: motivation

Morphological tagging seeks for most probable sequence of tags
for given sequence of words.
Formally, for given words w1,N = w1 . . .wN we search for se-
quence of tags t̂1,N = t1 . . . tN with highest probability p(t|w).

t̂ = argmax
t

p(t|w)

But how to calculate the probability p(t|w)?

For now we cannot estimate even p(t).

Computational morphology. Day 3. Real-world morphology.

N-gram models

N-gram models: motivation

Morphological tagging seeks for most probable sequence of tags
for given sequence of words.
Formally, for given words w1,N = w1 . . .wN we search for se-
quence of tags t̂1,N = t1 . . . tN with highest probability p(t|w).

t̂ = argmax
t

p(t|w)

But how to calculate the probability p(t|w)?
For now we cannot estimate even p(t).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Probability of sequence

By chain rule, p(t1 . . . tN) is

p(t1 . . . tN) = p(t1)p(t2|t1)p(t3|t1t2) . . . p(tN |t1 . . . tN−1)

There is no way to estimate p(t1000|t1 . . . t999).
N-gram model assumption: each word depends only on n − 1
preceding words (in our case, tags).
Formally, p(tN |t1 . . . tN−1) = p(tN |tN−n+1 . . . tN−1).
For example, for trigram model (n = 3):

p(t1 . . . tN) = p(t1)p(t2|t1)p(t3|t1t2)p(t4|t2t3) . . . p(tN |tN−2tN−1)

But how to estimate p(tN |tN−2tN−1)?

Computational morphology. Day 3. Real-world morphology.

N-gram models

Probability of sequence

By chain rule, p(t1 . . . tN) is

p(t1 . . . tN) = p(t1)p(t2|t1)p(t3|t1t2) . . . p(tN |t1 . . . tN−1)

There is no way to estimate p(t1000|t1 . . . t999).

N-gram model assumption: each word depends only on n − 1
preceding words (in our case, tags).
Formally, p(tN |t1 . . . tN−1) = p(tN |tN−n+1 . . . tN−1).
For example, for trigram model (n = 3):

p(t1 . . . tN) = p(t1)p(t2|t1)p(t3|t1t2)p(t4|t2t3) . . . p(tN |tN−2tN−1)

But how to estimate p(tN |tN−2tN−1)?

Computational morphology. Day 3. Real-world morphology.

N-gram models

Probability of sequence

By chain rule, p(t1 . . . tN) is

p(t1 . . . tN) = p(t1)p(t2|t1)p(t3|t1t2) . . . p(tN |t1 . . . tN−1)

There is no way to estimate p(t1000|t1 . . . t999).
N-gram model assumption: each word depends only on n − 1
preceding words (in our case, tags).
Formally, p(tN |t1 . . . tN−1) = p(tN |tN−n+1 . . . tN−1).

For example, for trigram model (n = 3):

p(t1 . . . tN) = p(t1)p(t2|t1)p(t3|t1t2)p(t4|t2t3) . . . p(tN |tN−2tN−1)

But how to estimate p(tN |tN−2tN−1)?

Computational morphology. Day 3. Real-world morphology.

N-gram models

Probability of sequence

By chain rule, p(t1 . . . tN) is

p(t1 . . . tN) = p(t1)p(t2|t1)p(t3|t1t2) . . . p(tN |t1 . . . tN−1)

There is no way to estimate p(t1000|t1 . . . t999).
N-gram model assumption: each word depends only on n − 1
preceding words (in our case, tags).
Formally, p(tN |t1 . . . tN−1) = p(tN |tN−n+1 . . . tN−1).
For example, for trigram model (n = 3):

p(t1 . . . tN) = p(t1)p(t2|t1)p(t3|t1t2)p(t4|t2t3) . . . p(tN |tN−2tN−1)

But how to estimate p(tN |tN−2tN−1)?

Computational morphology. Day 3. Real-world morphology.

N-gram models

Probability of sequence

By chain rule, p(t1 . . . tN) is

p(t1 . . . tN) = p(t1)p(t2|t1)p(t3|t1t2) . . . p(tN |t1 . . . tN−1)

There is no way to estimate p(t1000|t1 . . . t999).
N-gram model assumption: each word depends only on n − 1
preceding words (in our case, tags).
Formally, p(tN |t1 . . . tN−1) = p(tN |tN−n+1 . . . tN−1).
For example, for trigram model (n = 3):

p(t1 . . . tN) = p(t1)p(t2|t1)p(t3|t1t2)p(t4|t2t3) . . . p(tN |tN−2tN−1)

But how to estimate p(tN |tN−2tN−1)?

Computational morphology. Day 3. Real-world morphology.

N-gram models

Estimating n-gram probabilities

p(t3|t1t2) is the fraction of time we expect t3 to occur after
t1t2.

Let us calculate this fraction:

p(t3|t1t2) =
c(t1t2t3)

c(t1t2�)
=

c(t1t2t3)∑
t

c(t1t2t)

c(t1t2t3) � number of t1t2t3 occurrences,
c(t1t2�) � number of times something occurs after t1t2.

Problem: everything containing a trigram that never occurred
in training corpus (c(t1t2t3) = 0) has count 0.
Solution: every n-gram additionally occurs α times.

p(t3|t1t2) =
c(t1t2t3) + α

c(t1t2�) + α|D|
, |D| � size of dictionary.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Estimating n-gram probabilities

p(t3|t1t2) is the fraction of time we expect t3 to occur after
t1t2.
Let us calculate this fraction:

p(t3|t1t2) =
c(t1t2t3)

c(t1t2�)
=

c(t1t2t3)∑
t

c(t1t2t)

c(t1t2t3) � number of t1t2t3 occurrences,
c(t1t2�) � number of times something occurs after t1t2.

Problem: everything containing a trigram that never occurred
in training corpus (c(t1t2t3) = 0) has count 0.
Solution: every n-gram additionally occurs α times.

p(t3|t1t2) =
c(t1t2t3) + α

c(t1t2�) + α|D|
, |D| � size of dictionary.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Estimating n-gram probabilities

p(t3|t1t2) is the fraction of time we expect t3 to occur after
t1t2.
Let us calculate this fraction:

p(t3|t1t2) =
c(t1t2t3)

c(t1t2�)
=

c(t1t2t3)∑
t

c(t1t2t)

c(t1t2t3) � number of t1t2t3 occurrences,
c(t1t2�) � number of times something occurs after t1t2.

Problem: everything containing a trigram that never occurred
in training corpus (c(t1t2t3) = 0) has count 0.

Solution: every n-gram additionally occurs α times.

p(t3|t1t2) =
c(t1t2t3) + α

c(t1t2�) + α|D|
, |D| � size of dictionary.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Estimating n-gram probabilities

p(t3|t1t2) is the fraction of time we expect t3 to occur after
t1t2.
Let us calculate this fraction:

p(t3|t1t2) =
c(t1t2t3)

c(t1t2�)
=

c(t1t2t3)∑
t

c(t1t2t)

c(t1t2t3) � number of t1t2t3 occurrences,
c(t1t2�) � number of times something occurs after t1t2.

Problem: everything containing a trigram that never occurred
in training corpus (c(t1t2t3) = 0) has count 0.
Solution: every n-gram additionally occurs α times.

p(t3|t1t2) =
c(t1t2t3) + α

c(t1t2�) + α|D|
, |D| � size of dictionary.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Estimating n-gram probabilities

additive (Laplace) smoothing � add α to all the counts:

p(t3|t1t2) =
c(t1t2t3) + α

c(t1t2�) + α|D|
, |D| � size of dictionary.

How to choose α? It should depend on n-gram order, size of
dictionary, corpus size...
With improper α: inadequate.
Selection of proper α: too complicated (used only for unigram
models).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Estimating n-gram probabilities

additive (Laplace) smoothing � add α to all the counts:

p(t3|t1t2) =
c(t1t2t3) + α

c(t1t2�) + α|D|
, |D| � size of dictionary.

How to choose α? It should depend on n-gram order, size of
dictionary, corpus size...

With improper α: inadequate.
Selection of proper α: too complicated (used only for unigram
models).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Estimating n-gram probabilities

additive (Laplace) smoothing � add α to all the counts:

p(t3|t1t2) =
c(t1t2t3) + α

c(t1t2�) + α|D|
, |D| � size of dictionary.

How to choose α? It should depend on n-gram order, size of
dictionary, corpus size...
With improper α: inadequate.
Selection of proper α: too complicated (used only for unigram
models).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backo� smoothing

Sometimes trigram counts are too sparse (data from Europarl
corpus):

new scienti�c fact 0
scienti�c fact 12
new scienti�c do 0
scienti�c do 0

By trigram model p(fact|new scientific) = p(do|new scientific).
We should �descend� to lower order for more reliable estimates.
General scheme (interpolation):

pI (tn|t1,n−1) = λpc(tn|t1,n−1) + (1− λ)pI (tn|t2,n−1)

pc(tn|t1,n−1) =
c(t1 . . . tn)

c(t1 . . . tn−1�)
(�honest� counts)

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backo� smoothing

Sometimes trigram counts are too sparse (data from Europarl
corpus):

new scienti�c fact 0
scienti�c fact 12
new scienti�c do 0
scienti�c do 0

By trigram model p(fact|new scientific) = p(do|new scientific).

We should �descend� to lower order for more reliable estimates.
General scheme (interpolation):

pI (tn|t1,n−1) = λpc(tn|t1,n−1) + (1− λ)pI (tn|t2,n−1)

pc(tn|t1,n−1) =
c(t1 . . . tn)

c(t1 . . . tn−1�)
(�honest� counts)

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backo� smoothing

Sometimes trigram counts are too sparse (data from Europarl
corpus):

new scienti�c fact 0
scienti�c fact 12
new scienti�c do 0
scienti�c do 0

By trigram model p(fact|new scientific) = p(do|new scientific).
We should �descend� to lower order for more reliable estimates.

General scheme (interpolation):

pI (tn|t1,n−1) = λpc(tn|t1,n−1) + (1− λ)pI (tn|t2,n−1)

pc(tn|t1,n−1) =
c(t1 . . . tn)

c(t1 . . . tn−1�)
(�honest� counts)

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backo� smoothing

Sometimes trigram counts are too sparse (data from Europarl
corpus):

new scienti�c fact 0
scienti�c fact 12
new scienti�c do 0
scienti�c do 0

By trigram model p(fact|new scientific) = p(do|new scientific).
We should �descend� to lower order for more reliable estimates.
General scheme (interpolation):

pI (tn|t1,n−1) = λpc(tn|t1,n−1) + (1− λ)pI (tn|t2,n−1)

pc(tn|t1,n−1) =
c(t1 . . . tn)

c(t1 . . . tn−1�)
(�honest� counts)

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backo� smoothing

General scheme (interpolation):

pI (tn|t1,n−1) = λpc(tn|t1,n−1) + (1− λ)pI (tn|t2,n−1)

pc(tn|t1,n−1) =
c(t1 . . . tn)

c(t1 . . . tn−1�)
(�honest� counts)

General scheme (backo�):

pBO(tn|t1,n−1) =

{
λpc(tn|t1,n−1), c(t1 . . . tn) > 0,

(1− λ)pBO(tn|t2,n−1), c(t1 . . . tn) = 0

How to calculate λ?
The greater is λ for history t1 . . . tn−1, the more we �trust� the
counts and the less expect new words.
We do it when:

t1 . . . tn−1 occurs enough times.
t1 . . . tn−1 has not much continuations.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backo� smoothing

General scheme (interpolation):

pI (tn|t1,n−1) = λpc(tn|t1,n−1) + (1− λ)pI (tn|t2,n−1)

pc(tn|t1,n−1) =
c(t1 . . . tn)

c(t1 . . . tn−1�)
(�honest� counts)

General scheme (backo�):

pBO(tn|t1,n−1) =

{
λpc(tn|t1,n−1), c(t1 . . . tn) > 0,

(1− λ)pBO(tn|t2,n−1), c(t1 . . . tn) = 0

How to calculate λ?

The greater is λ for history t1 . . . tn−1, the more we �trust� the
counts and the less expect new words.
We do it when:

t1 . . . tn−1 occurs enough times.
t1 . . . tn−1 has not much continuations.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backo� smoothing

General scheme (interpolation):

pI (tn|t1,n−1) = λpc(tn|t1,n−1) + (1− λ)pI (tn|t2,n−1)

pc(tn|t1,n−1) =
c(t1 . . . tn)

c(t1 . . . tn−1�)
(�honest� counts)

General scheme (backo�):

pBO(tn|t1,n−1) =

{
λpc(tn|t1,n−1), c(t1 . . . tn) > 0,

(1− λ)pBO(tn|t2,n−1), c(t1 . . . tn) = 0

How to calculate λ?
The greater is λ for history t1 . . . tn−1, the more we �trust� the
counts and the less expect new words.

We do it when:

t1 . . . tn−1 occurs enough times.
t1 . . . tn−1 has not much continuations.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backo� smoothing

General scheme (interpolation):

pI (tn|t1,n−1) = λpc(tn|t1,n−1) + (1− λ)pI (tn|t2,n−1)

pc(tn|t1,n−1) =
c(t1 . . . tn)

c(t1 . . . tn−1�)
(�honest� counts)

General scheme (backo�):

pBO(tn|t1,n−1) =

{
λpc(tn|t1,n−1), c(t1 . . . tn) > 0,

(1− λ)pBO(tn|t2,n−1), c(t1 . . . tn) = 0

How to calculate λ?
The greater is λ for history t1 . . . tn−1, the more we �trust� the
counts and the less expect new words.
We do it when:

t1 . . . tn−1 occurs enough times.

t1 . . . tn−1 has not much continuations.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backo� smoothing

General scheme (interpolation):

pI (tn|t1,n−1) = λpc(tn|t1,n−1) + (1− λ)pI (tn|t2,n−1)

pc(tn|t1,n−1) =
c(t1 . . . tn)

c(t1 . . . tn−1�)
(�honest� counts)

General scheme (backo�):

pBO(tn|t1,n−1) =

{
λpc(tn|t1,n−1), c(t1 . . . tn) > 0,

(1− λ)pBO(tn|t2,n−1), c(t1 . . . tn) = 0

How to calculate λ?
The greater is λ for history t1 . . . tn−1, the more we �trust� the
counts and the less expect new words.
We do it when:

t1 . . . tn−1 occurs enough times.
t1 . . . tn−1 has not much continuations.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

Witten-Bell smoothing:

pI (tn|t1,n−1) = λpc(tn|t1,n−1) + (1− λ)pI (tn|t2,n−1)
λ = c(t1 . . . tn−1�)c(t1 . . . tn−1�) + N1+(t1 . . . tn−1)

N1+(t1 . . . tn−1) = |{t|c(t1 . . . tn−1t) > 0}
N1+(t1 . . . tn−1) � �number of continuations�

Example (BNC corpus):

w1 c(w1�) N1+(w1) N3+(w1) λ(w1) 1− λ(w1)

spite 2899 59 15
2899

2899+ 59
= 0.980 0.02

stupid 2898 602 117
2898

2898+ 602
= 0.828 0.172

Unigram counts for stupid are 86 times more valuable than for spite.
The more continuations we have, the less is λ.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

Witten-Bell smoothing:

pI (tn|t1,n−1) = λpc(tn|t1,n−1) + (1− λ)pI (tn|t2,n−1)
λ = c(t1 . . . tn−1�)c(t1 . . . tn−1�) + N1+(t1 . . . tn−1)

N1+(t1 . . . tn−1) = |{t|c(t1 . . . tn−1t) > 0}
N1+(t1 . . . tn−1) � �number of continuations�

Example (BNC corpus):

w1 c(w1�) N1+(w1) N3+(w1) λ(w1) 1− λ(w1)

spite 2899 59 15
2899

2899+ 59
= 0.980 0.02

stupid 2898 602 117
2898

2898+ 602
= 0.828 0.172

Unigram counts for stupid are 86 times more valuable than for spite.
The more continuations we have, the less is λ.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

Witten-Bell smoothing:

pI (tn|t1,n−1) = λpc(tn|t1,n−1) + (1− λ)pI (tn|t2,n−1)
λ = c(t1 . . . tn−1�)c(t1 . . . tn−1�) + N1+(t1 . . . tn−1)

N1+(t1 . . . tn−1) = |{t|c(t1 . . . tn−1t) > 0}
N1+(t1 . . . tn−1) � �number of continuations�

Example (BNC corpus):

w1 c(w1�) N1+(w1) N3+(w1) λ(w1) 1− λ(w1)

spite 2899 59 15
2899

2899+ 59
= 0.980 0.02

stupid 2898 602 117
2898

2898+ 602
= 0.828 0.172

Unigram counts for stupid are 86 times more valuable than for spite.
The more continuations we have, the less is λ.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

In the worst case (even bigram tn−1tn is unseen) we backo� to uni-
gram probability.

But that's not the unigram probability that should be used.
Example: c(Angeles) is rather high, but it occurs only after Los.
It is strange to assume this word after others.
Instead of unigram probability of tn we use

pBO(tn) =
N+1(tn)∑
t

N+1(t)

N+1(tn) = |{t|c(t tn) > 0}
N+1(tn) � (number of left continuations)

Witten-Bell smoothing is not the best, but enough for our purposes.
More powerful methods:

Deleted interpolation.
Kneser-Ney smoothing (and its modi�ed version).
Also non-ngram language model (factored models, neural net-
based, etc.).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

In the worst case (even bigram tn−1tn is unseen) we backo� to uni-
gram probability.
But that's not the unigram probability that should be used.

Example: c(Angeles) is rather high, but it occurs only after Los.
It is strange to assume this word after others.
Instead of unigram probability of tn we use

pBO(tn) =
N+1(tn)∑
t

N+1(t)

N+1(tn) = |{t|c(t tn) > 0}
N+1(tn) � (number of left continuations)

Witten-Bell smoothing is not the best, but enough for our purposes.
More powerful methods:

Deleted interpolation.
Kneser-Ney smoothing (and its modi�ed version).
Also non-ngram language model (factored models, neural net-
based, etc.).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

In the worst case (even bigram tn−1tn is unseen) we backo� to uni-
gram probability.
But that's not the unigram probability that should be used.
Example: c(Angeles) is rather high, but it occurs only after Los.
It is strange to assume this word after others.

Instead of unigram probability of tn we use

pBO(tn) =
N+1(tn)∑
t

N+1(t)

N+1(tn) = |{t|c(t tn) > 0}
N+1(tn) � (number of left continuations)

Witten-Bell smoothing is not the best, but enough for our purposes.
More powerful methods:

Deleted interpolation.
Kneser-Ney smoothing (and its modi�ed version).
Also non-ngram language model (factored models, neural net-
based, etc.).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

In the worst case (even bigram tn−1tn is unseen) we backo� to uni-
gram probability.
But that's not the unigram probability that should be used.
Example: c(Angeles) is rather high, but it occurs only after Los.
It is strange to assume this word after others.
Instead of unigram probability of tn we use

pBO(tn) =
N+1(tn)∑
t

N+1(t)

N+1(tn) = |{t|c(t tn) > 0}
N+1(tn) � (number of left continuations)

Witten-Bell smoothing is not the best, but enough for our purposes.
More powerful methods:

Deleted interpolation.
Kneser-Ney smoothing (and its modi�ed version).
Also non-ngram language model (factored models, neural net-
based, etc.).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

In the worst case (even bigram tn−1tn is unseen) we backo� to uni-
gram probability.
But that's not the unigram probability that should be used.
Example: c(Angeles) is rather high, but it occurs only after Los.
It is strange to assume this word after others.
Instead of unigram probability of tn we use

pBO(tn) =
N+1(tn)∑
t

N+1(t)

N+1(tn) = |{t|c(t tn) > 0}
N+1(tn) � (number of left continuations)

Witten-Bell smoothing is not the best, but enough for our purposes.

More powerful methods:

Deleted interpolation.
Kneser-Ney smoothing (and its modi�ed version).
Also non-ngram language model (factored models, neural net-
based, etc.).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

In the worst case (even bigram tn−1tn is unseen) we backo� to uni-
gram probability.
But that's not the unigram probability that should be used.
Example: c(Angeles) is rather high, but it occurs only after Los.
It is strange to assume this word after others.
Instead of unigram probability of tn we use

pBO(tn) =
N+1(tn)∑
t

N+1(t)

N+1(tn) = |{t|c(t tn) > 0}
N+1(tn) � (number of left continuations)

Witten-Bell smoothing is not the best, but enough for our purposes.
More powerful methods:

Deleted interpolation.
Kneser-Ney smoothing (and its modi�ed version).

Also non-ngram language model (factored models, neural net-
based, etc.).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

In the worst case (even bigram tn−1tn is unseen) we backo� to uni-
gram probability.
But that's not the unigram probability that should be used.
Example: c(Angeles) is rather high, but it occurs only after Los.
It is strange to assume this word after others.
Instead of unigram probability of tn we use

pBO(tn) =
N+1(tn)∑
t

N+1(t)

N+1(tn) = |{t|c(t tn) > 0}
N+1(tn) � (number of left continuations)

Witten-Bell smoothing is not the best, but enough for our purposes.
More powerful methods:

Deleted interpolation.
Kneser-Ney smoothing (and its modi�ed version).
Also non-ngram language model (factored models, neural net-
based, etc.).

	Finite-state morphology: real-world examples
	Turkish verbs
	Spanish verb: present tense
	Arabic: root-and-pattern morphology

	Morphological tagging
	N-gram models

