Computational morphology. Day 3. Real-world morphology.

Computational morphology.

Day 3. Real-world morphology.

Alexey Sorokin!?
IMoscow State University, 2Moscow Institute of Science and Technology
European Summer School

in Logic, Language and Information,
Toulouse, 24-28 July, 2017

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Day 3 outline

@ Real-world linguistic phenomena in FOMA.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Day 3 outline

@ Real-world linguistic phenomena in FOMA.
@ Morphological tagging: problem setting.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Day 3 outline

@ Real-world linguistic phenomena in FOMA.
@ Morphological tagging: problem setting.
@ N-gram language models.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Two-level morphology

@ Finite-state morphology deals well with concatenative morpho-

logy.
o Ideally: agglutinative languages (Turkish, Finnish, etc.).

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Two-level morphology

@ Finite-state morphology deals well with concatenative morpho-

logy.
o Ideally: agglutinative languages (Turkish, Finnish, etc.).
o General two-level scheme:

o Create the slots for prototypical morphemes.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Two-level morphology

@ Finite-state morphology deals well with concatenative morpho-
logy.
o Ideally: agglutinative languages (Turkish, Finnish, etc.).
o General two-level scheme:
o Create the slots for prototypical morphemes.
o Fill these slots with appropriate morphemes according to morpho-
tactics and phonology.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Two-level morphology

@ Finite-state morphology deals well with concatenative morpho-

logy.
o Ideally: agglutinative languages (Turkish, Finnish, etc.).
o General two-level scheme:
o Create the slots for prototypical morphemes.
o Fill these slots with appropriate morphemes according to morpho-
tactics and phonology.

o Case study: Turkish verb inflection.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Two-level morphology

@ Finite-state morphology deals well with concatenative morpho-
logy.
Ideally: agglutinative languages (Turkish, Finnish, etc.).
General two-level scheme:
o Create the slots for prototypical morphemes.
o Fill these slots with appropriate morphemes according to morpho-
tactics and phonology.

Case study: Turkish verb inflection.
Categories to model:

e Voice: passive, active.
e Tense: aorist, continuous.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Two-level morphology

@ Finite-state morphology deals well with concatenative morpho-
logy.
Ideally: agglutinative languages (Turkish, Finnish, etc.).
General two-level scheme:

o Create the slots for prototypical morphemes.

o Fill these slots with appropriate morphemes according to morpho-

tactics and phonology.

Case study: Turkish verb inflection.
Categories to model:

e Voice: passive, active.

e Tense: aorist, continuous.

o Number: singular, plural.

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples

Two-level morphology

@ Finite-state morphology deals well with concatenative morpho-

logy.
Ideally: agglutinative languages (Turkish, Finnish, etc.).
General two-level scheme:

o Create the slots for prototypical morphemes.
o Fill these slots with appropriate morphemes according to morpho-
tactics and phonology.

Case study: Turkish verb inflection.
Categories to model:

e Voice: passive, active.

e Tense: aorist, continuous.
o Number: singular, plural.
e Person: 1,2,3.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

@ Input format: infinitive+Voice+Tense+Person+Number.

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

Input format: infinitive+Voice+Tense+Person+Number.
+Voice: +Pass/+Act.
+Tense: +Aor/+Cont.
+Person: +1/42/43.
+Number: +Sg/+PI.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

Input format: infinitive+Voice+Tense+Person+Number.
+Voice: +Pass/+Act.

+Tense: +Aor/+Cont.

+Person: +1/42/43.

+Number: +Sg/+PI.

Verb form structure:

(stem) (VoiceSuf) (Tense) (PersNumSuf)

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

@ Verb form structure: (stem)(VoiceSuf)(Tense)(PersNumSuf).

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

@ Verb form structure: (stem)(VoiceSuf)(Tense)(PersNumSuf).
@ Passive voice suffix: -n after vowels, -In after /, -1/ otherwise.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

@ Verb form structure: (stem)(VoiceSuf)(Tense)(PersNumSuf).
@ Passive voice suffix: -n after vowels, -In after /, -1/ otherwise.
@ Aorist suffix:

o -r after vowels.

o -Ir after consonants in polysyllabic stems.
o -Ar after consonants in monosyllabic stems.
e -Ir after 13 monosyllabic exceptions.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

@ Verb form structure: (stem)(VoiceSuf)(Tense)(PersNumSuf).
@ Passive voice suffix: -n after vowels, -In after /, -1/ otherwise.
@ Aorist suffix:

o -r after vowels.

o -Ir after consonants in polysyllabic stems.
o -Ar after consonants in monosyllabic stems.
e -Ir after 13 monosyllabic exceptions.

@ Progressive suffix:

e -Iyor after consonants.

e -yor afteru, i, i, 1.

o -Iyor after vowels, the vowel is removed.

@ -iyor after roots de-/ye-, the vowel is removed.

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

Verb form structure: (stem)(VoiceSuf)(Tense)(PersNumSuf).
Passive voice suffix: -n after vowels, -In after /, -1/ otherwise.
Aorist suffix:

o -r after vowels.

o -Ir after consonants in polysyllabic stems.
o -Ar after consonants in monosyllabic stems.
e -Ir after 13 monosyllabic exceptions.

Progressive suffix:

e -Iyor after consonants.

e -yor after u, i, i, I.

o -Iyor after vowels, the vowel is removed.

@ -iyor after roots de-/ye-, the vowel is removed.

@ Verb ending ((PersNumSuf)):

Person
1 2 3
Number
Singular -Im -sln -0
Plural -z -sinlz -IAr

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

1 step: defining slots

define Voice "+Act +Pass'

define Tense "+Aor" | "+Prog";

define Number "+Sg" | "+PI" ;

define Person "+1" | "42" | "43" ;

define Input Infinitive Voice Tense Person Number;
deleting —mAk and defining slots

define Markerlnsertion [.] —> "!" || _ m[a | €] k Voice ;
define InfinitiveDeletion m[a | e]k —> "" || "I"
define TensePattern [[..] —> "lAorSuffix!" || "I" 74+ "4+Aor"] .0. [[..] —> "!ProgSuffix!"
H ujn B 7+ "+Prog"];
define PassivePattern [..] —> "IPassSuffix!" || "I" 7+ "+4Pass" ;
define Cleanup [Voice | Tense | "I"] —> "";
”
$ flookup -i -w "" turkish_diacr.bin < test.in

okumak+Pass+Prog+1+Pl oku!PassSuffix!!ProgSuffix!+1+P1
gelmek+Pass+Aor+2+Sg gel!PassSuffix!!AorSuffix!+2+3g
uyumak+Act+Prog+3+P1 uyu!ProgSuffix!+3+P1
izlemek+Act+Prog+3+P1 izle!ProgSuffix!+3+P1
bilmek+Act+Aor+2+P1 bil!AorSuffix!+2+P1
gormek+Act+Aor+2+P1 gor!AorSuffix!+2+P1

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

2 step: filling voice

4 passive suffix filling

define Passivel "!PassSuffix!" —> 1| || [Consonant —] ;
define Passive2 "IPassSuffix!" —> I'n ||| _;

define Passive3 "IPassSuffix!" —> n || Vowel ;

define PassiveSuffix Passivel .o. Passive2 .0. Passive3

$ flookup -i -w "" turkish_diacr.bin < test.in
okumak+Pass+Prog+1+P1 okun!ProgSuffix!+1+P1
gelmek+Pass+Aor+2+Sg gelIn!AorSuffix!+2+Sg
uyumak+Act+Prog+3+P1 uyu!ProgSuffix!+3+P1
izlemek+Act+Prog+3+P1l izle!ProgSuffix!+3+P1
bilmek+Act+Aor+2+P1 bil!AorSuffix!+2+P1
gormek+Act+Aor+2+P1 gor!AorSuffix!+2+P1

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

3 step: filling aorist

#£ 4 aorist suffix filling

define PseudoVowel Vowel | I | A ;

read lexc aor exception.lexc

define AorException;

define Monosyllable Consonant* Vowel Consonants ;

define AorSuffix0 "lAorSuffix!" —> I r || .#. AorException _ ;

define AorSuffixl "lAorSuffix!" —> r || PseudoVowel _;

define AorSuffix2 "lAorSuffix!" —> A r || .#. Monosyllable ;

define AorSuffix3 "lAorSuffix!" —> Ir || _;

define AorSuffix AorSuffix0 .0. AorSuffixl .0. AorSuffix2 .0. AorSuffix3 ;

$ flookup -i -w "" turkish_diacr.bin < test.in
okumak+Pass+Prog+1+P1 okun!ProgSuffix!+1+P1
gelmek+Pass+Aor+2+Sg gelInIr+2+Sg
uyumak+Act+Prog+3+P1 uyu!ProgSuffix!+3+P1
izlemek+Act+Prog+3+P1 izle!ProgSuffix!+3+P1
bilmek+Act+Aor+2+P1 bilIr+2+P1
gormek+Act+Aor+2+P1 gorAr+2+P1

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

4 step: filling progressive

4t progressive suffix filling

define ProgSuffix0 "!ProgSuffix!" —> "!" lyor | ;

#+# afteri, 1, u, 0

define ProgSuffixVowel0 "!" | —> "" || [u [d]i[1]

#+# other vowels

define ProgSuffixVowell [a | o |e| 8] "I" —> "" || ;

demek, yemek

define ProgDemek e "!" | —> i || #.[d|y]

sonorization

define ProgSonort —> d || .#. [gi|e|ta] "I";

define ProgCleanup "!" —> "" || _;

define ProgSuffix ProgSuffix0 .0. ProgSuffixVowel0 .0. ProgSuffixVowell .0. ProgDemek .
o. ProgSonor .0. ProgCleanup ;

$ flookup -i -w "" turkish_diacr.bin < test.in
okumak+Pass+Prog+1+P1 okunIyor+1+Pl
gelmek+Pass+Aor+2+Sg gelInIr+2+Sg
uyumak+Act+Prog+3+P1 uyuyor+3+P1
izlemek+Act+Prog+3+P1 izlIyor+3+Pl
bilmek+Act+Aor+2+P1 bilIr+2+P1
gormek+Act+Aor+2+P1 gorAr+2+P1

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

5 step: verbal endings

#+# ending filling

define Endingls "+1" "4+Sg" —> Im || _;

define Ending2s "+2" "4Sg" —>slIn || _;

define Ending3s "+3" "4+Sg" —> "" ||

define Endinglp "+1" "4+PI" —> 1z || _;

define Ending2p "+2" "+PI" —>slInlz | ;

define Ending3p "+3" "4+PI" —> I Ar || _;

define Ending Endingls .o. Ending2s .0. Ending3s .0. Endinglp .0. Ending2p .0
Ending3p ;

$ flookup -i -w "" turkish_diacr.bin < test.in
okumak+Pass+Prog+1+P1 okunIyorIz
gelmek+Pass+Aor+2+Sg gelInlrsin
uyumak+Act+Prog+3+P1 uyuyorlAr
izlemek+Act+Prog+3+P1 izlIyorlAr
bilmek+Act+Aor+2+P1 bilIrsInlz
gormek+Act+Aor+2+P1 gorArsInlz

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Turkish verbs

Turkish verb conjugation

6 step: vowel harm

Vowel Harmony (left context on output size)
define VowelHarmony [A —> a // LastVowelHard ,, A —> e // LastVowelSoft ,,

I —> 1// LastVowelHardStraight _ ,, | —> i //
LastVowelSoftStraight ,,
I —> u // LastVowelHardRound _ ,, | —> ii//

LastVowelSoftRound] ;

define Fill PassiveSuffix .0. AorSuffix .0. ProgSuffix .0. Ending .0. VowelHarmony ;
define Grammar Input .o. Pattern .o. Fill ;

$ flookup -i -w "" turkish_diacr.bin < test.in
okumak+Pass+Prog+1+P1 okunuyoruz

gelmek+Pass+Aor+2+Sg gelinirsin
uyumak+Act+Prog+3+P1 uyuyorlar

izlemek+Act+Prog+3+P1 izliyorlar
bilmek+Act+Aor+2+P1 bilirsiniz

gormek+Act+Aor+2+P1 gorersiniz

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

General model

@ Spanish verb conjugation is rather simple:

Number | Person | -ar (tomar) -er (comer) -ir (escribir)

1 tomo como escribo
Singular 2 tomas comes escribes

3 toma come escribe

1 tomamos comemos escribimos
Plural 2 tomais coméis escribis

3 toman comen escriben

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

General model

@ Spanish verb conjugation is rather simple:

Number | Person | -ar (tomar) -er (comer) -ir (escribir)

1 tomo como escribo
Singular 2 tomas comes escribes

3 toma come escribe

1 tomamos comemos escribimos
Plural 2 tomais coméis escribis

3 toman comen escriben

@ There are several morphonetic alterations:
e In +1+Sg g becomes j before -er: emerger — emerjo.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

General model

@ Spanish verb conjugation is rather simple:

Number | Person | -ar (tomar) -er (comer) -ir (escribir)

1 tomo como escribo
Singular 2 tomas comes escribes

3 toma come escribe

1 tomamos comemos escribimos
Plural 2 tomais coméis escribis

3 toman comen escriben

@ There are several morphonetic alterations:
e In +1+Sg g becomes j before -er: emerger — emerjo.
o In +14Sg c turns to zc before -er/-ir and after vowel:
conducir — conduzco,
agradecer — agradezco (though mecer — mezo).

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Model alterations

@ Spanish verb conjugation is rather simple.
@ But model vowel alterations exist:

Number | Person 0-/-ue- —e—/-.le- _e_/_.l_
contar sentir servir
1 cuento siento Sirvo
Singular 2 cuentas sientes sirves
3 cuenta siente sirve
1 contamos sentimos servimos
Plural 2 contdis sentis servis
3 cuentan sienten sirven

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Model alterations

@ Spanish verb conjugation is rather simple.
@ But model vowel alterations exist:

Number | Person 0-/-ue- —e—/-.le- _e_/_.l_
contar sentir servir
1 cuento siento Sirvo
Singular 2 cuentas sientes sirves
3 cuenta siente sirve
1 contamos sentimos servimos
Plural 2 contdis sentis servis
3 cuentan sienten sirven

@ These classes include much more verbs:

o -0-/-ue-: morir, dormir, soler, sofiar, ...

e -e-/-ie-: pensar, entender, perder, preferir, ...

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Model alterations

@ Spanish verb conjugation is rather simple.
@ But model vowel alterations exist:

Number | Person 0-/-ue- —e—/-.le- _e_/_.l_
contar sentir servir
1 cuento siento Sirvo
Singular 2 cuentas sientes sirves
3 cuenta siente sirve
1 contamos sentimos servimos
Plural 2 contdis sentis servis
3 cuentan sienten sirven

@ These classes include much more verbs:
o -0-/-ue-: morir, dormir, soler, sofiar, ...
e -e-/-ie-: pensar, entender, perder, preferir, ...
o -e-/-i-: pedir, vestir, elegir, expedir, . ..

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Model alterations

@ Also Spanish has some irregular verbs:

Number | Person | estar ser haber
1 estoy soy he
Singular 2 estds eres has
3 esta es ha
1 estamos somos hemos
Plural 2 estais Sois habéis
3 estan son han

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Model alterations

@ Also Spanish has some irregular verbs:

Number | Person | estar ser haber
1 estoy soy he
Singular 2 estds eres has
3 esta es ha
1 estamos somos hemos
Plural 2 estais Sois habéis
3 estan son han

@ There are some more irregular verbs: decir, dar, ver, ...
@ Some verbs just have irregular +1+Sg forms:
o traer — traigo (also caer).

e valer — valgo (also salir, poner).
e saber — sé, caber — quepo.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Model alterations

@ Also Spanish has some irregular verbs:

Number | Person | estar ser haber
1 estoy soy he
Singular 2 estds eres has
3 esta es ha
1 estamos somos hemos
Plural 2 estais Sois habéis
3 estan son han

@ There are some more irregular verbs: decir, dar, ver, ...
@ Some verbs just have irregular +1+Sg forms:

o traer — traigo (also caer).
o valer — valgo (also salir, poner).
e saber — sé, caber — quepo.

@ How to model that all properly?

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Regular model

First, model regular verbs (with regular phonetic alterations):

define Vowel e | i | é|ija|u]o] \ﬂo
[

NG A WN

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

define Cons b |c|d|[f|g|h|j|k
define Letter Cons | Vowel ;

define Stem Letterx Vowel Letterx ;
define InfSuffix [a [i|e]r;

define Infinitive Stem InfSuffix ;
define Number "+Sg" | "+PI" ;
define Person "4+1" | "42" | 43" ;
define Input Infinitive Number Person;
phonetic alterations

define ChangeEndConsl ¢ —> z c || Vowel _ [e|i]r "+Sg" "+1";

define ChangeEndCons2 ¢ —> z || [Cons —z] _ [e|i]r "+Sg" "+1";

define ChangeEndCons3 g —>j, gu —>g. qu —>c|| _[e|i]r"+Sg" "+1";
define UIR[.] —>y || [Letter —qJu _ir| "+Sg" [TR G)

[minflplalrls|tivix|ylz:

define Ch, End Ch EndConsl .0. Ch, EndCons2 .0. ChangeEndCons3 .0. UIR ;
#+# endings

define ielnfSuffix [i | e]r;

define PresEndingls InfSuffix —> o || _ "+Sg" "+1" ;

define PresEnding2s a r —> a's, ielnfSuffix —> e s || _ "+Sg" "+2";

define PresEnding3s a r —> a, ielnfSuffix —> e || _ "+Sg" "+3";

define PresEndinglp r —> mos || _ "+PI" "+1";

define PresEnding2p a r —> dis, er —> éis,ir—>is| _ "+PI" "+2";

define PresEnding3p a r —> a n, ielnfSuffix —> e n || _ "+PI" "4+3";

define PresEnding PresEndingls .o. PresEnding2s .0. PresEnding3s .0. PresEndinglp .0. PresEnding2p .0. PresEnding3p ;
combining all

define CleanUp [Person | Number] —> "" || _;

define Regular [Input .0. ChangeEnd .o. PresEnding | ;

define Grammar [IrregularForm .P. Regular] .0. CleanUp ;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

L exicon file

Exceptions are listed in the lexicon file:

Multichar _Symbols +Sg +Pl +1 +2 43

LEXICON Root
Verb ; SglVerb ;
LEXICON Verb

estar+Sg+1:estoy #;
estar4-Sg+2:estas #;
estar+Sg+3:estd #;
estar+Pl43:estan #;

ser+Sg+1:soy #;
ser+Sg+2:eres #;
ser+Sg+3:es #;
ser+Pl4+1:somos #;
ser+Pl+2:sois #;
ser+Pl+3:son #;

haber+Sg+1:he #;
haber+Sg+2:has #;
haber+Sg+3:has #;
haber+Pl+3:han #;

LEXICON SglVerb

saber+Sg+1:sé #;
traer+Sg-+1:traigo #;
caer+Sg+1:caigo #;
caber+Sg+1:quepo #;
poner+Sg+1:pongo #;
valer+Sg+1:valgo #;
salir4-Sg+1:salgo #;

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

Regular model: application

$ flookup -i -w "" spanish.bin < spanish_test.in
caer+Sg+1 caigo comer+Sg+3 come
ser+Pl+1 somos correr+P1+2 corréis
ser+P1+2 s0is vender+P1+3 venden
ser+Sg+1 soy escribir+Sg+2 escribes
estar+P1+3 estan surgir+P1l+1 surgimos
estar+Sg+2 estas destruir+P1+3 destruyen
estar+Sg+3 esta instruir+Sg+2 instruyes
hablar+Sg+1 hablo cojer+Sg+l cojo
hablar+Sg+2 hablas distinguir+Sg+1l distingo
cantar+P1l+1 cantamos conducir+Sg+l conduzco

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

e Stem alterations occur simultaneously in several forms (all sin-
gular and +PI+3).
@ It is inconvenient to write in the lexicon all alterations.

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples
Spanish verb: present tense

Spanish: stem alterations

e Stem alterations occur simultaneously in several forms (all sin-
gular and +PI+3).
@ It is inconvenient to write in the lexicon all alterations.
o Moreover, after stem alterations stems are subject to usual
phonological rules:
o elegir+Sg+1 — elijo
o seguir+Sg+1 — sigo (not *siguo).

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

e Stem alterations occur simultaneously in several forms (all sin-
gular and +PI+3).
It is inconvenient to write in the lexicon all alterations.
Moreover, after stem alterations stems are subject to usual
phonological rules:

o elegir+Sg+1 — elijo

o seguir+Sg+1 — sigo (not *siguo).

@ In stem alteration branch we compose stem alteration with
phonological changes.
In regular branch only phonological changes are applied.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

e Stem alterations occur simultaneously in several forms (all sin-
gular and +PI+3).
@ It is inconvenient to write in the lexicon all alterations.
o Moreover, after stem alterations stems are subject to usual
phonological rules:
o elegir+Sg+1 — elijo
o seguir+Sg+1 — sigo (not *siguo).
@ In stem alteration branch we compose stem alteration with
phonological changes.
@ In regular branch only phonological changes are applied.
@ This is lenient composition:

X.0.Y = (X.0.Y).P.Y

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

e Stem alterations occur simultaneously in several forms (all sin-
gular and +PI+3).

@ It is inconvenient to write in the lexicon all alterations.

o Moreover, after stem alterations stems are subject to usual
phonological rules:

o elegir+Sg+1 — elijo
o seguir+Sg+1 — sigo (not *siguo).
@ In stem alteration branch we compose stem alteration with
phonological changes.
@ In regular branch only phonological changes are applied.
@ This is lenient composition:

X.0.Y = (X.0.Y).P.Y

@ But we use priority union instead.

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

@ We have two alteration branches:
o First inserts -(i)g- before ending of exceptional +Sg+1 forms:
(caer+Sg+1 — caigo, salir+Sg+1 — salgo).
o Second deals with stem vowel change (-o-/-ue-, -e-/-ie-, -e-/-i-).
@ First branch has higher priority: (tener+Sg+1 — tengo, but
tener+Sg+2 — tienes, tener+Sg+3 — tiene).

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

@ We have two alteration branches:

o First inserts -(i)g- before ending of exceptional +Sg+1 forms:
(caer+Sg+1 — caigo, salir+Sg+1 — salgo).
o Second deals with stem vowel change (-o-/-ue-, -e-/-ie-, -e-/-i-).
@ First branch has higher priority: (tener+Sg+1 — tengo, but
tener+Sg+2 — tienes, tener+Sg+3 — tiene).
@ Not to deal with pseudoforms as *traiger we replace ending with
special symbol:
Mfirst stem.lexc!!!
LEXICON Root
traer:traiG%!Ending2%! #;
salir:salG%!Ending3%! #;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

@ We have two alteration branches:
o First inserts -(i)g- before ending of exceptional +Sg+1 forms:
(caer+Sg+1 — caigo, salir+Sg+1 — salgo).
o Second deals with stem vowel change (-o-/-ue-, -e-/-ie-, -e-/-i-).
@ First branch has higher priority: (tener+Sg+1 — tengo, but
tener+Sg+2 — tienes, tener+Sg+3 — tiene).
@ Not to deal with pseudoforms as *traiger we replace ending with
special symbol:

Mfirst stem.lexc!!!
LEXICON Root
traer:traiG%!Ending2%! #;
salir:salG%!Ending3%! #;

@ Analogously for second branch (dorm- — duerm-):
Msecond stem.lexc!!!
LEXICON Root
tener:tien%!Ending2%! #;
pedir:pid%!Ending2%! #;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

@ Verb endings are replaced by markers (rules are changed accordingly):

define Marker [ar] —> "!Endingl!" , [er] —> "IEnding2!" ,
[ir]—> "IEnding3!" || _ Number ;

@ Stem transformations are read from lexicons:

lexicon for stem changes

read lexc first stem.lexc

define FirstStem ;

define FirstStemChange FirstStem "+Sg" "+1" ;

read lexc second stem.lexc

define SecondStem ;

define SecondStemChange SecondStem ["+Sg" ? | "+PI" "+3"] ;
define IrregularStemChange FirstStemChange .P. SecondStemChange ;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

@ Verb endings are replaced by markers (rules are changed accordingly):

define Marker [ar] —> "!Endingl!" , [er] —> "IEnding2!" ,
[ir]—> "IEnding3!" || _ Number ;

@ Stem transformations are read from lexicons:

lexicon for stem changes

read lexc first stem.lexc

define FirstStem ;

define FirstStemChange FirstStem "+Sg" "+1" ;

read lexc second stem.lexc

define SecondStem ;

define SecondStemChange SecondStem ["+Sg" ? | "+PI" "+3"] ;
define IrregularStemChange FirstStemChange .P. SecondStemChange ;

@ In the end everything is combined by priority union:

define Regular [Input .o0. [IrregularStemChange .P. Marker] .0. ChangeEnd .o.
PresEnding | ;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

@ Stem alterations work indeed:

$ flookup -i -w "" spanish_full.bin < spanish_stem.in
detraer+Sg+1 detraigo pensar+P1l+1 pensamos
tener+P1+1 tenemos morir+Sg+3 muere
tener+P1+2 tenéis morir+P1+2 moris
tener+Sg+1 tengo pedir+P1+3 piden
dormir+P1+3 duermen pedir+Sg+2 pides
dormir+Sg+2 duermes preferir+P1+l1 preferimos
hacer+Sg+1 hago preferir+P1+3 prefieren
hacer+Sg+3 hace preferir+Sg+l prefiero
pensar+Sg+1 pienso decir+3Sg+3 dice
pensar+Sg+2 piensas preferir+Sg+l prefiero

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: stem alterations

@ Stem alterations work indeed:

$ flookup -i -w "" spanish_full.bin < spanish_stem.in
detraer+Sg+1 detraigo pensar+P1l+1 pensamos
tener+P1+1 tenemos morir+Sg+3 muere
tener+P1+2 tenéis morir+P1+2 moris
tener+Sg+1 tengo pedir+P1+3 piden
dormir+P1+3 duermen pedir+Sg+2 pides
dormir+Sg+2 duermes preferir+P1+l1 preferimos
hacer+Sg+1 hago preferir+P1+3 prefieren
hacer+Sg+3 hace preferir+Sg+l prefiero
pensar+Sg+1 pienso decir+3Sg+3 dice
pensar+Sg+2 piensas preferir+Sg+l prefiero

@ Should be added: derivatonal prefixes.

e tener — contener, mantener, detener, . ..
o hacer — rehacer, deshacer, ...

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: fusion

@ +1+4Sg form once more:

Infinitive | +1+Sg gerund

partir parto partiendo
imbuir imbuyo imbuyendo
destruir destruyo destruyendo
delinquir | delinco delinquiendo
distinguir | distingo distinguiendo
coger cojo cogiendo
agradecer | agradezco agradeciendo
mecer mezo meciendo

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples

Spanish verb: present tense

Spanish: fusion

@ +1+4Sg form once more:

Infinitive | +1+Sg gerund

partir parto partiendo
imbuir imbuyo imbuyendo
destruir destruyo destruyendo
delinquir | delinco delinquiendo
distinguir | distingo distinguiendo
coger cojo cogiendo
agradecer | agradezco agradeciendo
mecer mezo meciendo

@ Personal ending fuses with the stem on morpheme boundary.
@ That could be carefully modeled with context “phonetic” rules.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: root-and-pattern morphology

@ So far morpheme structure was linear.

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: root-and-pattern morphology

@ So far morpheme structure was linear.

@ That is not true for Semitic languages (e.g. Arabic):
kataba “(he) wrote+Perf”
kattabat she intensively) wrote+Perf”
yaktubu he) was written+Imp”
takattibu “(she) was (intensively) written+Imp”

(
(
“(
(

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: root-and-pattern morphology

@ So far morpheme structure was linear.
@ That is not true for Semitic languages (e.g. Arabic):

kataba “(he) wrote+Perf”

kattabat “(she intensively) wrote+Perf”
yaktubu “(he) was written+Imp”

takattibu “(she) was (intensively) written+Imp”

@ Root k-t-b consists of consonants (usually 3).
@ Vowels reflect grammatical information.

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: root-and-pattern morphology

So far morpheme structure was linear.
That is not true for Semitic languages (e.g. Arabic):
kataba “(he) wrote+Perf”
kattabat she intensively) wrote+Perf”
yaktubu he) was written+Imp”
takattibu “(she) was (intensively) written+Imp”
Root k-t-b consists of consonants (usually 3).
Vowels reflect grammatical information.
Different verb classes have different vowel patterns:
marida “(he became) ill4+Perf”
marradat “(she intensively became) ill4Perf”
yamradu “(he) was made ill4+Imp”
tamarridu “(she) was (intensively) made ill4+Imp”

(
(
“(
(sh

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: simple example

@ We want to model something like:

(stem) (Type) (Voice) (Aspect) (Person) (Gender) — (wordForm)

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: simple example

@ We want to model something like:

(stem) (Type) (Voice) (Aspect) (Person) (Gender) — (wordForm)

@ Possible values:

(Type) € {l, 11},

(Voice) € {Act, Pass},
(Aspect) € {Perf, Imperf},
(Person) € {3},

(Gender) € {M,F}.

@ 16 variants.

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: simple example

@ We want to model something like:

(stem) (Type) (Voice) (Aspect) (Person) (Gender) — (wordForm)

@ Possible values:

(Type) € {l, 11},

(Voice) € {Act, Pass},

(Aspect) € {Perf, Imperf},

(Person) € {3},

(Gender) € {M,F}.

@ 16 variants.

e We model only one class (of the verb KTB “to write").

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic: word formation

@ Word formation in Arabic (A. A. Zalizniak's handout):

@ Stem variants:

Type Pattern | Example
| (basic) K-T-B kataba "to write”
I (intensive) | K-TT-B | kattaba "to write a lot”
@ Prefix/suffix variants:
Person+Gender | Perf. suffix Imp. prefix-suffix
+3+Masc -a ya- -u
+3+Fem -at ta- -u
@ Vowel filler variants:
Aspect Voice Prefix | Filler | Filler 11
Perfect Active a-a a-a
Perfect Passive u-i u-i
Imperfect | Active | ya- o-u a-i
Imperfect | Passive | yu- o-a a-a

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: input

@ Input format:

define Vowel [a | i|u];

define Consonant [k [t |[b|z|h|r|s|f[m]|d]|n]y]
define Letter [Vowel | Consonant |;

define Stem Consonant Consonant Consonant;

define Type ["+I" | "+1" |;

define Voice ["+Act" | "+Pass"];

define Aspect ["+Perf" | "+Imperf"];

define Person "+3";

define Gender ["+M" | "+F"];

define Input Stem Type Voice Aspect Person Gender;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: input

@ Input format:

define Vowel [a | i|u];

define Consonant [k [t |[b|z|h|r|s|f[m]|d]|n]y]
define Letter [Vowel | Consonant |;

define Stem Consonant Consonant Consonant;

define Type ["+I" | "+1" |;

define Voice ["+Act" | "+Pass"];

define Aspect ["+Perf" | "+Imperf"];

define Person "+3";

define Gender ["+M" | "+F"];

define Input Stem Type Voice Aspect Person Gender;

o Vowel positions are marked with digits:
define Olnsertion [..] —> "0" || .#. _;

define 1Insertion [..] —> "1" || "0" Consonant _;
define 2Insertion [..] —> "2" || "1" Consonant _ ;
define 3Insertion [..] —> "3" || "2" Consonant _;

define Poslnsertion Olnsertion .0. 1lnsertion .0. 2Insertion .0. 3Insertion;

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: fillers

@ Doubling second consonant of intensive:

define CheckTypel 7% "+|" 7x;

define CheckTypell 7% "4I1" ?x;

define TypellDuplication k —> [k k], b => [bb], t —> [t t], z—> [z z], h
—>[hhl,r—>[rr],s =>[ss], f—>[ff, m—>[mm],d—>[dd], n
> [n n] H 7 non.

define StemProcessing [CheckTypel] | [CheckTypell .o0. TypellDuplication];

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: fillers

@ Doubling second consonant of intensive:

define CheckTypel 7% "+|" 7x;

define CheckTypell 7% "4I1" ?x;

define TypellDuplication k —> [k k], b => [bb], t —> [t t], z—> [z z], h
—>[hhl,r—>[rr],s =>[ss], f—>[ff, m—>[mm],d—>[dd], n
> [n n] H 7 non.

define StemProcessing [CheckTypel] | [CheckTypell .o0. TypellDuplication];

@ Defining fillers:

define aaFill "1" —> a, "2" —> g;
define aiFill "1" —> a, "2" —> j;
define uiFill "1" —> u, "2" —> i;
define OaFill "1" —> [], "2"—> a;
define OuFill "1" —> [], "2"—> u;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: selecting the rule

@ Exhaustive search for appropriate rule:

define PerfectActiveFill aaFill;

define ImperfectActiveFill [CheckTypel .0. QuFill] | [CheckTypell .o. aiFill];

define ActiveFill [CheckPerf .o. PerfectActiveFill] | [Checklmperf .o.
ImperfectActiveFill];

define PerfectPassiveFill uiFill;

define ImperfectPassiveFill [CheckTypel .0. OaFill] | [CheckTypell .0. aaFill];

define PassiveFill [CheckPerf .o. PerfectPassiveFill] | [Checklmperf .o0.
ImperfectPassiveFill];

define Fill [CheckPass .o. PassiveFill] | [CheckAct .o. ActiveFill] ;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: selecting the rule

@ Exhaustive search for appropriate rule:

define PerfectActiveFill aaFill;

define ImperfectActiveFill [CheckTypel .0. QuFill] | [CheckTypell .o. aiFill];

define ActiveFill [CheckPerf .o. PerfectActiveFill] | [Checklmperf .o.
ImperfectActiveFill];

define PerfectPassiveFill uiFill;

define ImperfectPassiveFill [CheckTypel .0. OaFill] | [CheckTypell .0. aaFill];

define PassiveFill [CheckPerf .o. PerfectPassiveFill] | [Checklmperf .o0.
ImperfectPassiveFill];

define Fill [CheckPass .o. PassiveFill] | [CheckAct .o. ActiveFill] ;

@ The same for prefixes (0 marker):

define OPrefix "0" —> []; define taPrefix "0" —> t a;

define yaPrefix "0" —> y a; define tuPrefix "0" —> t u;

define yuPrefix "0" —> y u;

define PerfectPrefix OPrefix;

define ImperfectActivePrefix [CheckMasc .o. yaPrefix] | [CheckFem .o. taPrefix] ;

define ImperfectPassivePrefix [CheckMasc .o. yuPrefix] | [CheckFem .o. tuPrefix] ;

define ImperfectPrefix [CheckAct .0. ImperfectActivePrefix] | [CheckPass .o.
ImperfectPassivePrefix] ;

define Prefix [CheckPerf .o. PerfectPrefix] | [Checklmperf .o0. ImperfectPrefix] ;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: selecting the rule

@ Processing the suffixes (3 marker):

define ImperfectSuffix "3" —> u || _ Type;

define PerfectMascSuffix "3" —> a || Type;

define PerfectFemSuffix "3" —> a t || _ Type;

define PerfectSuffix [CheckMasc .o. PerfectMascSuffix | | [CheckFem .o.
PerfectFemSuffix] ;

define Suffix [CheckPerf .0. PerfectSuffix] | [Checklmperf .o. ImperfectSuffix];

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: selecting the rule

@ Processing the suffixes (3 marker):

define ImperfectSuffix "3" —> u || _ Type;

define PerfectMascSuffix "3" —> a || Type;

define PerfectFemSuffix "3" —> a t || _ Type;

define PerfectSuffix [CheckMasc .o. PerfectMascSuffix | | [CheckFem .o.
PerfectFemSuffix] ;

define Suffix [CheckPerf .0. PerfectSuffix] | [Checklmperf .o. ImperfectSuffix];

@ Combining all stages together:

define Cleanup Type | Voice | Aspect | Person | Gender —> [] ;
define Grammar Input .o. Poslnsertion .0. StemProcessing .0. Fill .o. Prefix .o.
Suffix .0. Cleanup;

Computational morphology. Day 3. Real-world morphology.

Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: selecting the rule

@ Processing the suffixes (3 marker):

define ImperfectSuffix "3" —> u || _ Type;

define PerfectMascSuffix "3" —> a || Type;

define PerfectFemSuffix "3" —> a t || _ Type;

define PerfectSuffix [CheckMasc .o. PerfectMascSuffix | | [CheckFem .o.
PerfectFemSuffix] ;

define Suffix [CheckPerf .0. PerfectSuffix] | [Checklmperf .o. ImperfectSuffix];

@ Combining all stages together:

define Cleanup Type | Voice | Aspect | Person | Gender —> [] ;
define Grammar Input .o. Poslnsertion .0. StemProcessing .0. Fill .o. Prefix .o.
Suffix .0. Cleanup;

@ Real Arabic morphology is much more complex.

Computational morphology. Day 3. Real-world morphology.
Finite-state morphology: real-world examples

Arabic: root-and-pattern morphology

Arabic conjugation in FOMA: selecting the rule

@ Processing the suffixes (3 marker):

define ImperfectSuffix "3" —> u || _ Type;

define PerfectMascSuffix "3" —> a || Type;

define PerfectFemSuffix "3" —> a t || _ Type;

define PerfectSuffix [CheckMasc .o. PerfectMascSuffix | | [CheckFem .o.
PerfectFemSuffix] ;

define Suffix [CheckPerf .0. PerfectSuffix] | [Checklmperf .o. ImperfectSuffix];

@ Combining all stages together:

define Cleanup Type | Voice | Aspect | Person | Gender —> [] ;
define Grammar Input .o. Poslnsertion .0. StemProcessing .0. Fill .o. Prefix .o.
Suffix .0. Cleanup;

@ Real Arabic morphology is much more complex.
@ But it was one of the first languages to obtain a transducer grammar
(Beesley, 1990).

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging: example

@ The main task of computational morphology: morphological

tagging.
e Tagging assigns morphological labels to words.
DT JJ NN VBD DT JJ NN

The baseball player made a home run

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging: example

@ The main task of computational morphology: morphological

tagging.
e Tagging assigns morphological labels to words.
DT JJ NN VBD DT JJ NN

The baseball player made a home run
@ The most difficult problem: homonymy.

PRP VB RB TO VB NN
/ run home to play baseball

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging: example

@ The main task of computational morphology: morphological

tagging.
e Tagging assigns morphological labels to words.
DT JJ NN VBD DT JJ NN

The baseball player made a home run
@ The most difficult problem: homonymy.
PRP VB RB TO VB NN
/ run home to play baseball
@ Some words have several tags:

e baseball: NN, JJ
e run: VB, VBN, NN
e home: NN, JJ, RB

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging: example

@ The main task of computational morphology: morphological

tagging.
e Tagging assigns morphological labels to words.
DT JJ NN VBD DT JJ NN

The baseball player made a home run
@ The most difficult problem: homonymy.

PRP VB RB TO VB NN
/ run home to play baseball

Some words have several tags:

e baseball: NN, JJ
e run: VB, VBN, NN
e home: NN, JJ, RB

How to discriminate between possible variants?

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging: example

@ The main task of computational morphology: morphological

tagging.
e Tagging assigns morphological labels to words.
DT JJ NN VBD DT JJ NN

The baseball player made a home run
@ The most difficult problem: homonymy.

PRP VB RB TO VB NN
/ run home to play baseball

Some words have several tags:

e baseball: NN, JJ

e run: VB, VBN, NN

e home: NN, JJ, RB
How to discriminate between possible variants?
Other problem: tagging of unknown words.

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging: variants

@ Two variants of morphological tagging.
e Coarse (POS-tagging): only part-of-speech labels (about 10—15
labels).

baseball NN

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging: variants

@ Two variants of morphological tagging.
e Coarse (POS-tagging): only part-of-speech labels (about 10—15
labels).
baseball NN
@ Fine-grained: full morphological description.
o Feature-based description:
kupila "(she) bought" VERB Mood=Ind, Tense=Past,
Aspect=Perf, Voice=Active,
Number=Sing, Gender=Fem

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging: variants

e Two variants of morphological tagging.
e Coarse (POS-tagging): only part-of-speech labels (about 10—15
labels).
baseball NN
@ Fine-grained: full morphological description.
o Feature-based description:
kupila "(she) bought" VERB Mood=Ind, Tense=Past,
Aspect=Perf, Voice=Active,
Number=Sing, Gender=Fem
@ Positional description:

kupila Vmis-sfa-e-

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging: variants

@ Two variants of morphological tagging.
e Coarse (POS-tagging): only part-of-speech labels (about 10—15

labels).
baseball NN
@ Fine-grained: full morphological description.
o Feature-based description:

kupila "(she) bought" VERB Mood=Ind, Tense=Past,
Aspect=Perf, Voice=Active,
Number=Sing, Gender=Fem

Positional description:

kupila Vmis-sfa-e-
For English: no coarse tags, extended set of POS-tags.

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging: variants

@ Two variants of morphological tagging.
e Coarse (POS-tagging): only part-of-speech labels (about 10—15

labels).
baseball NN
@ Fine-grained: full morphological description.
o Feature-based description:

kupila "(she) bought" VERB Mood=Ind, Tense=Past,
Aspect=Perf, Voice=Active,
Number=Sing, Gender=Fem

Positional description:

kupila Vmis-sfa-e-
For English: no coarse tags, extended set of POS-tags.
For inflectional languages: large number of complex tags (up
to 1000 for Russian or Czech).

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging standards

@ Oldest standard — Penn treebank (Marcus et al., 1993). 36 POS-
tags for English with no inner structure (https://www.ling.
upenn.edu/courses/Fall_2003/1ing001/penn_treebank_pos.html):

12. | NN Noun, singular or mass
13. | NNS Noun, plural

14. | NNP | Proper noun, singular
15. | NNPS | Proper noun, plural

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging standards

@ Oldest standard — Penn treebank (Marcus et al., 1993). 36 POS-
tags for English with no inner structure (https://www.ling.
upenn.edu/courses/Fall_2003/1ing001/penn_treebank_pos.html):

12. | NN Noun, singular or mass
13. | NNS Noun, plural

14. | NNP | Proper noun, singular
15. | NNPS | Proper noun, plural

o For inflectional languages, two basic approaches:
o Positional tagset (Multext-East project for Slavic languages).

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Morphological tagging standards

@ Oldest standard — Penn treebank (Marcus et al., 1993). 36 POS-
tags for English with no inner structure (https://www.ling.
upenn.edu/courses/Fall_2003/1ing001/penn_treebank_pos.html):

12. | NN Noun, singular or mass
13. | NNS Noun, plural

14. | NNP | Proper noun, singular
15. | NNPS | Proper noun, plural

o For inflectional languages, two basic approaches:

o Positional tagset (Multext-East project for Slavic languages).
o Feature-based tagset (Universal Dependencies project).

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Positional tagsets

@ Used in Multext-East project for Slavic languages
(http://nl.ijs.si/ME/).
o Each tag is a sequence of letters.

http://nl.ijs.si/ME/

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Positional tagsets

@ Used in Multext-East project for Slavic languages
(http://nl.ijs.si/ME/).

o Each tag is a sequence of letters.

o First capital letter stands for part-of-speech
(N — noun, V — verb, etc.).

@ For most Slavic languages there are 13 basic POS-tags.

http://nl.ijs.si/ME/

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Positional tagsets

@ Used in Multext-East project for Slavic languages
(http://nl.ijs.si/ME/).

Each tag is a sequence of letters.

First capital letter stands for part-of-speech

(N — noun, V — verb, etc.).

For most Slavic languages there are 13 basic POS-tags.
Other smallcase letters reflect features:

Ncmsny common noun, masculine, singular,
neuter, animate (yes).

Vmis-sfa-e- | main verb, indicative, past(s), singular,
feminine, active voice, perfect (e)

http://nl.ijs.si/ME/

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Positional tagsets

@ Used in Multext-East project for Slavic languages
(http://nl.ijs.si/ME/).

Each tag is a sequence of letters.

First capital letter stands for part-of-speech

(N — noun, V — verb, etc.).

For most Slavic languages there are 13 basic POS-tags.
Other smallcase letters reflect features:

Ncmsny common noun, masculine, singular,
neuter, animate (yes).

Vmis-sfa-e- | main verb, indicative, past(s), singular,
feminine, active voice, perfect (e)

e Disadvantage: tags are language- and specification-dependent.

http://nl.ijs.si/ME/

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Feature-based tagsets

@ Tags are specified accoriding to CONLL-U format

http://universaldependencies.org/format.html.
e Each tag has two parts: universal POS-tag (UPOSTAG)
and feature-value description (FEATS).

http://universaldependencies.org/format.html

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Feature-based tagsets

@ Tags are specified accoriding to CONLL-U format
http://universaldependencies.org/format.html.

e Each tag has two parts: universal POS-tag (UPOSTAG)
and feature-value description (FEATS).

@ 17 universal POS labels:

ADJ adjective INTJ interjection PUNCT punctuation

ADP adposition NOUN noun SCONJ subordinating
conjunction

ADV adverb NUM numeral SYM symbol

AUX auxiliary PART particle VERB verb

CCONJ coordinating | PRON pronoun X other

conjunction
DET determiner PROPN proper noun

http://universaldependencies.org/format.html

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Feature-based tagsets

@ Tags are specified accoriding to CONLL-U format
http://universaldependencies.org/format.html.

e Each tag has two parts: universal POS-tag (UPOSTAG)
and feature-value description (FEATS).

@ 17 universal POS labels:

ADJ adjective INTJ interjection PUNCT punctuation

ADP adposition NOUN noun SCONJ subordinating
conjunction

ADV adverb NUM numeral SYM symbol

AUX auxiliary PART particle VERB verb

CCONJ coordinating | PRON pronoun X other

conjunction
DET determiner PROPN proper noun

@ 21 features: 6 lexical and 15 inflectional (Gender, Number, etc.).

http://universaldependencies.org/format.html

Computational morphology. Day 3. Real-world morphology.
Morphological tagging

Feature-based tagsets

@ Tags are specified accoriding to CONLL-U format
http://universaldependencies.org/format.html.

e Each tag has two parts: universal POS-tag (UPOSTAG)
and feature-value description (FEATS).

@ 17 universal POS labels:

ADJ adjective INTJ interjection PUNCT punctuation

ADP adposition NOUN noun SCONJ subordinating
conjunction

ADV adverb NUM numeral SYM symbol

AUX auxiliary PART particle VERB verb

CCONJ coordinating | PRON pronoun X other

conjunction
DET determiner PROPN proper noun

@ 21 features: 6 lexical and 15 inflectional (Gender, Number, etc.).
@ Is a general standard for corpora in different languages (50 lan-
guages in version 2.0, March, 2017).

http://universaldependencies.org/format.html

Computational morphology. Day 3. Real-world morphology.

N-gram models

N-gram models: motivation

e Morphological tagging seeks for most probable sequence of tags
for given sequence of words.

Computational morphology. Day 3. Real-world morphology.

N-gram models

N-gram models: motivation

e Morphological tagging seeks for most probable sequence of tags
for given sequence of words.

o Formally, for given words wy y = wy ... wy we search for se-
quence of tags /t\LN =ty ...ty with highest probability p(t|w).

t = argmax, p(tjw)

Computational morphology. Day 3. Real-world morphology.

N-gram models

N-gram models: motivation

e Morphological tagging seeks for most probable sequence of tags

for given sequence of words.
o Formally, for given words wy y = wy ... wy we search for se-
quence of tags t; y = t; ...ty with highest probability p(t|w).

t = argmax, p(tjw)

@ But how to calculate the probability p(t|w)?

Computational morphology. Day 3. Real-world morphology.

N-gram models

N-gram models: motivation

e Morphological tagging seeks for most probable sequence of tags
for given sequence of words.

o Formally, for given words wy y = wy ... wy we search for se-
quence of tags /t\LN =ty ...ty with highest probability p(t|w).

t = argmax, p(tjw)

@ But how to calculate the probability p(t|w)?
@ For now we cannot estimate even p(t).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Probability of sequence

@ By chain rule, p(t; ... ty) is

p(t1 ... tN) = p(tl)p(t2|t1)p(t3|t1t2) ... p(t/\/|t1 ... tN—l)

Computational morphology. Day 3. Real-world morphology.

N-gram models

Probability of sequence

@ By chain rule, p(t; ... ty) is

p(t1 ... tN) = p(tl)p(t2|t1)p(t3|t1t2) ... p(t/\/|t1 ... tN—l)

@ There is no way to estimate p(tioo0|ti - - - togg)-

Computational morphology. Day 3. Real-world morphology.
N-gram models

Probability of sequence

@ By chain rule, p(t; ... ty) is

p(t1 ... tN) = p(tl)p(t2|t1)p(t3‘t1t2) ... p(t/\/|t1 ... tN—l)

@ There is no way to estimate p(tioo0|ti - - - togg)-

@ N-gram model assumption: each word depends only on n—1
preceding words (in our case, tags).

] Formally, p(tN|t1 ... tN_1) = p(tN|tN_n+1 - tN—l)-

Computational morphology. Day 3. Real-world morphology.
N-gram models

Probability of sequence

@ By chain rule, p(t; ... ty) is

p(t1 ... tN) = p(tl)p(t2|t1)p(t3‘t1t2) ... p(t/\/|t1 ... tN—l)

@ There is no way to estimate p(tioo0|ti - - - togg)-

@ N-gram model assumption: each word depends only on n—1
preceding words (in our case, tags).

] Formally, p(tN|t1 ... tN_1) = p(tN|tN_n+1 - tN—l)-

e For example, for trigram model (n = 3):

p(t ... tn) = p(t1)p(ta|t1) p(ts|tit2) p(ta|tats) . . . p(tn|tn—2tn—1)

Computational morphology. Day 3. Real-world morphology.
N-gram models

Probability of sequence

@ By chain rule, p(t; ... ty) is

p(t1 ... tN) = p(tl)p(t2|t1)p(t3‘t1t2) ... p(t/\/|t1 ... tN—l)

@ There is no way to estimate p(tioo0|ti - - - togg)-
@ N-gram model assumption: each word depends only on n—1
preceding words (in our case, tags).

] Formally, p(tN|t1 ... tN_1) = p(tN|tN_n+1 - tN—l)-
e For example, for trigram model (n = 3):

p(t ... tn) = p(t1)p(ta|t1) p(ts|tit2) p(ta|tats) . . . p(tn|tn—2tn—1)

@ But how to estimate p(ty|ty—2tn—1)7

Computational morphology. Day 3. Real-world morphology.

N-gram models

Estimating n-gram probabilities

e p(t3|titz) is the fraction of time we expect t3 to occur after
t1 bo.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Estimating n-gram probabilities

e p(t3|titz) is the fraction of time we expect t3 to occur after
t1 bo.
@ Let us calculate this fraction:
C(t1t2t3) C(t1t21.'3)
p(tz|titz) = =
c(htr®) > c(titat)
t
c(titat3) — number of t1tyt3 occurrences,
c(titp®) — number of times something occurs after t;t.

Computational morphology. Day 3. Real-world morphology.
N-gram models

Estimating n-gram probabilities

e p(t3|titz) is the fraction of time we expect t3 to occur after
t1 bo.
@ Let us calculate this fraction:

C(t1t2t3) C(t1t2t3)

plt3|titr) = =
(ts]ta22) c(htr®) > c(titat)
t
c(titat3) — number of t1tyt3 occurrences,
c(titp®) — number of times something occurs after t;t.

@ Problem: everything containing a trigram that never occurred
in training corpus (c(tit2t3) = 0) has count 0.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Estimating n-gram probabilities

e p(t3|titz) is the fraction of time we expect t3 to occur after
t1 bo.
@ Let us calculate this fraction:

C(t1t2t3) C(t1t2t3)

plt3|titr) = =
(ts]ta22) c(htr®) > c(titat)
t
c(titat3) — number of t1tyt3 occurrences,
c(titp®) — number of times something occurs after t;t.

@ Problem: everything containing a trigram that never occurred
in training corpus (c(tit2t3) = 0) has count 0.
@ Solution: every n-gram additionally occurs « times.

c(titats) +
(1220) + | D|’

p(ts|titr) = |D| — size of dictionary.
c

Computational morphology. Day 3. Real-world morphology.

N-gram models

Estimating n-gram probabilities

@ additive (Laplace) smoothing — add « to all the counts:

C(tl t2t3) —+ «
(tltz@) + Oz|D|’

p(ts|tity) = |D| — size of dictionary.
c

Computational morphology. Day 3. Real-world morphology.

N-gram models

Estimating n-gram probabilities

@ additive (Laplace) smoothing — add « to all the counts:

C(tl t2t3) —+ «
(tltz@) + Oz|D|’

p(ts|tity) = |D| — size of dictionary.
c

@ How to choose a? It should depend on n-gram order, size of
dictionary, corpus size...

Computational morphology. Day 3. Real-world morphology.

N-gram models

Estimating n-gram probabilities

@ additive (Laplace) smoothing — add « to all the counts:

C(tl t2t3) —+ «
(tltz@) + Oz|D|’

p(ts|tity) = |D| — size of dictionary.
c
@ How to choose a? It should depend on n-gram order, size of

dictionary, corpus size...
e With improper a: inadequate.
@ Selection of proper a: too complicated (used only for unigram

models).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backoff smoothing

@ Sometimes trigram counts are too sparse (data from Europarl
corpus):
new scientific fact 0
scientific fact 12
new scientific do 0
scientific do 0

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backoff smoothing

@ Sometimes trigram counts are too sparse (data from Europarl

corpus):
new scientific fact 0
scientific fact 12
new scientific do 0
scientific do 0

e By trigram model p(fact|new scientific) = p(do|new scientific).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backoff smoothing

@ Sometimes trigram counts are too sparse (data from Europarl

corpus):
new scientific fact 0
scientific fact 12
new scientific do 0
scientific do 0

e By trigram model p(fact|new scientific) = p(do|new scientific).
@ We should “descend” to lower order for more reliable estimates.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backoff smoothing

@ Sometimes trigram counts are too sparse (data from Europarl

corpus):
new scientific fact 0
scientific fact 12
new scientific do 0
scientific do 0

e By trigram model p(fact|new scientific) = p(do|new scientific).
@ We should “descend” to lower order for more reliable estimates.
@ General scheme (interpolation):

pi(taltin—1) = Apc(tnltin—1)+ (1 = X)pi(taltz,n-1)
c(ty...th) . .
tht1 h— = ——~ (*h t t
pc(tn|ti,n—1) (.. tn—l@)(onest” counts)

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backoff smoothing

@ General scheme (interpolation):

pi(taltin-1) = Apc(taltin-1)+ (1 = N)pi(talta,n-1)
c(tr...tn) . .
thity p— = —— 7 (*h t t
pe(tn|tin—1) . tn—1®)(onest” counts)

@ General scheme (backoff):

)\pc(tn|t17n_1), C(tl . tn) > 0,
(1 —)\)PBO(tn|t2,n—1)7 C(tl - tn) =0

pBO(tn’tl,n—l) = {

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backoff smoothing

@ General scheme (interpolation):

pi(taltin-1) = Apc(taltin-1)+ (1 = N)pi(talta,n-1)
c(tr...tn) . .
thity p— = —— 7 (*h t t
pe(tn|tin—1) . tn—1®)(onest” counts)

@ General scheme (backoff):

)\pc(tn|t17n_1), C(tl . tn) > 0,
(1 —)\)PBO(tn|t2,n—1)7 C(tl - tn) =0

pBO(tn’tl,n—l) = {

@ How to calculate \?

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backoff smoothing

@ General scheme (interpolation):

pi(taltin-1) = Apc(taltin-1)+ (1 = N)pi(talta,n-1)
c(tr...tn) . .
thity p— = —— 7 (*h t t
pe(tn|tin—1) . tn—1®)(onest” counts)

@ General scheme (backoff):

)\pc(tn|t17n_1), C(tl ...tn) > 0,
(1 —)\)PBO(tn|t2,n—1)7 C(tl - tn) =0

pBO(tn’tl,n—l) = {

@ How to calculate A7
@ The greater is X for history t; ... t, 1, the more we “trust” the
counts and the less expect new words.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backoff smoothing

@ General scheme (interpolation):

pi(taltin-1) = Apc(taltin-1)+ (1 = N)pi(talta,n-1)
c(tr...tn) . .
thity p— = —— 7 (*h t t
pe(tn|tin—1) . tn—1®)(onest” counts)

@ General scheme (backoff):

)\pc(tn|t17n_1), C(tl ...tn) > 0,
(1 —)\)PBO(tn|t2,n—1)7 C(tl - tn) =0

pBO(tn’tl,n—l) = {

@ How to calculate \?
@ The greater is X for history t; ... t, 1, the more we “trust” the

counts and the less expect new words.
o We do it when:

@ tj...t,_1 occurs enough times.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Backoff smoothing

@ General scheme (interpolation):

pi(taltin-1) = Apc(taltin-1)+ (1 = N)pi(talta,n-1)
c(tr...tn) . .
thity p— = —— 7 (*h t t
pe(tn|tin—1) . tn—1®)(onest” counts)

@ General scheme (backoff):

)\pc(tn|t17n_1), C(tl ...tn) > 0,
(1 —)\)PBO(tn|t2,n—1)7 C(tl - tn) =0

pBO(tn’tl,n—l) = {

@ How to calculate \7

@ The greater is X for history t; ... t, 1, the more we “trust” the
counts and the less expect new words.

o We do it when:

@ tj...t,_1 occurs enough times.
@ t;...t,_1 has not much continuations.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

@ Witten-Bell smoothing:

pl(tn‘tl,n—l) -)\pc(tn|t1,n—1) + (1 - A)pl(tn‘tQ,n—l)
A= C(tl...t,,71®)C(t1...fn71@)+N1+(t1...t,,,1)
) = |{tle(ts...th—1t) >0}
Nit(ty...th—1) — “number of continuations”

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

@ Witten-Bell smoothing:

pl(tn‘tl,n—l) - Apc(tn|t1,n—1) + (1 -)\)pl(tn‘tQ,n—l)
A= C(tl...t,,fl@)C(tl...tnfl@)'FN1+(t1...t,7,1)
Nip(ty...tho1) = [{tle(ty... ta—1t) >0}

Nit(ty...th—1) — “number of continuations”

@ Example (BNC corpus):

wy C(W1®) N1+(W1) N3+(W1))\(W1) 1—)\(W1)
) 2899
. 2898

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

@ Witten-Bell smoothing:

pl(tn‘tl,n—l) - Apc(tn|t1,n—1) + (1 -)\)pl(tn‘tQ,n—l)
A= C(tl...t,,fl@)C(tl...tnfl@)'FN1+(t1...t,7,1)
Nip(ty...tho1) = [{tle(ty... ta—1t) >0}

Nit(ty...th—1) — “number of continuations”

@ Example (BNC corpus):

wy C(W1®) N1+(W1) N3+(W1))\(W1) 1—)\(W1)
) 2899
. 2898

@ Unigram counts for stupid are 86 times more valuable than for spite.
@ The more continuations we have, the less is \.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

@ In the worst case (even bigram t,_1t, is unseen) we backoff to uni-
gram probability.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

@ In the worst case (even bigram t,_1t, is unseen) we backoff to uni-
gram probability.
@ But that’s not the unigram probability that should be used.

Computational morphology. Day 3. Real-world morphology.
N-gram models

Witten-Bell smoothing

@ In the worst case (even bigram t,_1t, is unseen) we backoff to uni-
gram probability.

@ But that’s not the unigram probability that should be used.

@ Example: c(Angeles) is rather high, but it occurs only after Los.

@ It is strange to assume this word after others.

Computational morphology. Day 3. Real-world morphology.
N-gram models

Witten-Bell smoothing

@ In the worst case (even bigram t,_1t, is unseen) we backoff to uni-
gram probability.

@ But that’s not the unigram probability that should be used.
@ Example: c(Angeles) is rather high, but it occurs only after Los.
@ It is strange to assume this word after others.
@ Instead of unigram probability of t, we use
N+1(tn)
pso(tn)
> N (t)
t
Nia(tn) = [{tle(tta) >0}

Nii(t,) — (number of left continuations)

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

In the worst case (even bigram t,_1t, is unseen) we backoff to uni-
gram probability.

But that’s not the unigram probability that should be used.
Example: c(Angeles) is rather high, but it occurs only after Los.

It is strange to assume this word after others.

Instead of unigram probability of t, we use

N+1(tn)
peo(tn) = <=5 —/a
BO() zt: N+1(t)
Nii(tn) = [{tle(t ta) >0}
Nii(t,) — (number of left continuations)

Witten-Bell smoothing is not the best, but enough for our purposes.

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

In the worst case (even bigram t,_1t, is unseen) we backoff to uni-
gram probability.

But that’s not the unigram probability that should be used.
Example: c(Angeles) is rather high, but it occurs only after Los.

It is strange to assume this word after others.

Instead of unigram probability of t, we use

N+1(tn)
peo(tn) = <=5 —/a
BO() zt: N+1(t)
Nii(tn) = [{tle(t ta) >0}
Nii(t,) — (number of left continuations)

Witten-Bell smoothing is not the best, but enough for our purposes.
More powerful methods:

o Deleted interpolation.
o Kneser-Ney smoothing (and its modified version).

Computational morphology. Day 3. Real-world morphology.

N-gram models

Witten-Bell smoothing

In the worst case (even bigram t,_1t, is unseen) we backoff to uni-
gram probability.

But that’s not the unigram probability that should be used.
Example: c(Angeles) is rather high, but it occurs only after Los.

It is strange to assume this word after others.

Instead of unigram probability of t, we use

N+1(tn)
tn
PBO() zt: N+1(t)
Nii(tn) = [{tle(t ta) >0}
Nii(t,) — (number of left continuations)

Witten-Bell smoothing is not the best, but enough for our purposes.
More powerful methods:

o Deleted interpolation.

o Kneser-Ney smoothing (and its modified version).

e Also non-ngram language model (factored models, neural net-
based, etc.).

	Finite-state morphology: real-world examples
	Turkish verbs
	Spanish verb: present tense
	Arabic: root-and-pattern morphology

	Morphological tagging
	N-gram models

