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Finite automata: English plural
All plural forms can be decomposed as stem + s, where

A stem is anything with at least one vowel, but not ending with:

-s, -x, -z, -sh, -ch, -zh (sibilants).
Cy.

Automaton for all possible stems
(C0 = C − {s, x , z , c , h},C1 = C0 ∪ {s, x , z}):
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Properties of �nite automata

Theorem

Every automata language is recognized by an automaton with single
letter labels.

Sketch of the proof

Split all labels of length > 2 by inserting additional states.
Now we have only letters and ε as labels.
Add an edge 〈q1, a〉 → q2 if there exist states q3, q4 such that
(〈q3, a〉 → q4) ∈ ∆ and there are ε-paths from q1 to q3 and
from q4 to q2.
Mark as terminal all states from which terminal states are ε-
reachable.
Now remove all ε-paths.
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Properties of �nite automata

De�nition

An automaton with one-letter labels is deterministic if no state has
two outcoming edges with the same label.

Theorem

Every automata language can be recognized by deterministic
automata.

Sketch of the proof

New automaton states are sets of old states.
An edge labeled by a leads from set Q1 to Q2 if Q2 contains
exactly the states reachable from Q1 by a.
Start state Q0 = {q0} (only old start state).
Final states: subsets containing at least one old �nal state.
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Kleene theorem

Theorem

The classes of automata and regular languages are the same.

Sketch of the proof

We should transform every �nite automaton to regular
expression and every regular expression to �nite automaton.
Automaton → expression: di�cult, we will not prove it.
Expression → automaton: simple proof by induction:
Regular languages are constructed from primitives by means of
concatenation, union and iteration.
Primitive regular languages (singletons and empty language) are
certainly automata.
We should prove that regular operations preserve automata
languages.
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Kleene theorem

Theorem

The classes of automata and regular languages are the same.

Sketch of the proof
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Kleene theorem

Theorem

The classes of automata and regular languages are the same.

Sketch of the proof

Iteration: L1 = L(M1), L∗1 = L(M)
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Properties of automata languages
Theorem

The class of automata languages is closed under complement.

Sketch of the proof

Consider the deterministic automaton for language L.
Complete it: add a new sink state q′.
If a state q1 does not have outcoming edge labeled by letter a,
add an edge 〈q1, a〉 → q′.
Add edge 〈q′, a〉 → a for every letter a.
Now for every q1 ∈ Q, a ∈ Σ there is an edge of the form
〈q1, a〉 → q2.
Consequently, every word w leads from q0 to exactly one state:
terminal if w ∈ L and non-terminal if w ∈ L.
Switching non-terminal and terminal states yields automaton for
the complement.
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Properties of automata languages
Theorem

The class of automata languages is closed under intersection.

Sketch of the proof

Easy variant: L1 ∩ L2 = L1 ∪ L2.
Complex (but e�ective) variant: consider complete deterministic
automata M1 for L1 and M2 for L2.
Let Q1,Q2 be their sets of states, q01, q02 be initial states and
F1,F2 be sets of �nal states.
Consider a new automaton whose states are pairs 〈q1, q2〉,
q1 ∈ Q1, q2 ∈ Q2.
Its start state is 〈q01, q02〉.
On the �rst coordinate it operates like M1, on the second like
M2.
Finite states are pairs of �nal states (the automaton accepts i�
it accepts for both coordinates).
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Recursive construction of automata

Recursive construction of automata

Finite automata are closed under a couple of operations.

Moreover, this closure is e�ective: corresponding automata are
built algorithmically.
Therefore we may combine automata just as regular expressions,
but with more operations.
For example, the automata for English plural can be expressed
as:

(Lsib · es) ∪ (((Lsib ∩ LC ) ∪ LCy ∪ LV ) · s),

where

Lsib � words ending with sibilant.
LC � words ending with consonant.
LCy � words ending with consonant+y.
LV � words ending with vowel (not y).

The basic languages are the automata ones; the automaton for
the whole expression could be constructed recursively.
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Recursive construction of automata

Recursive construction of automata
Turkish in�nitive

Construct a �nite automaton for Turkish in�nitive

In�nitive has the form stem+mEk.
Placeholder E is �lled by e if the stem ends with e, i, �o, �u and a if it
ends with a, �, o, u.

M1 is the automaton for expression C*V(C|V)*m(a|e)k (it is easy to
construct it).
M2 checks the condition for vowels:

C ,V
e, i,

�o, �u

a, �, o, u

C ,V

C ,V

e

a

M1 ∩M2 is the required automaton.
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M1 is the automaton for expression C*V(C|V)*m(a|e)k (it is easy to
construct it).

M2 checks the condition for vowels:

C ,V
e, i,

�o, �u

a, �, o, u

C ,V

C ,V

e

a

M1 ∩M2 is the required automaton.
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Recursive construction of automata
Turkish in�nitive

Construct a �nite automaton for Turkish passive in�nitive

In�nitive has the form stem+X+mEk.
Placeholder E is �lled by e if the stem ends with e, i, �o, �u and a if it
ends with a, �, o, u.
Su�x X is -n if the stem ends with vowel, -An if the stem ends with
l and -Al otherwise.
Placeholder A equals � after a, �; u after u, o; i after e, i ; �u after �u,
�o.
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Finite transducers

Finite transducers: de�nition

Finite transducers are automata with output.

Precisely, now there are two alphabets: Σ (input) and Γ (output).
Edges have the form 〈u : v〉, u ∈ Σ∗, v ∈ Γ∗ and mean
�replace u with v �.
Summarizing, �nite transducers de�ne not sets but relations
between inputs and outputs.
Automata can also be treated as transducers (that output exactly
their input for the words accepted by automaton).
Simplest transducer � identity relation (alphabet a, b):

a, b

We will formally treat �nite transductions as sets of word pairs.
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Finite transducers

Finite transducers: examples

Adds a to the beginning:

ε : a

a : a, b : b

Removes �nal b if it is present and rejects other words:

a : a, b : b

b : ε

Adds b after every a:

b : b
c : c

a : a

ε : b
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Finite transducers: examples

Doubles each letter except for the last one:

a : a

b : b

ε : a

ε : b

b
: b

ε : a

Retro-assimilates all C1 to C2 (a sequence of C1-s preceding C2

is substituted for C2)
C :C V :V
C2 :C2

C1 :C1

C :C ,V :V

C1 :C2C2 :C2

C1 :C2
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Finite transducers

Properties of �nite transducers

Every �nite transducer is equivalent to a transducer with labels
of the form a : ε, a ∈ Σ and ε : b, b ∈ Γ.

Sketch of the proof

Edges of the form a1 . . . ak : b1 . . . br can be decomposed as sequence
of edges a1 : ε, . . . , ak : ε, ε : b1, . . . , ε : br .

Edges of the form ε : ε are removed as in �nite automata.

Finite transductions are closed under:

Concatenation.
Union.
Multiplicative iteration(φ∗ ={u1 . . . uk , v1 . . . vk | 〈uj , vj〉∈φ}).

Finite transduction domain is an automata language (just keep
only input label in the transducer).
Finite transduction range is an automata language.
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Finite transducers

Properties of �nite transducers

Restriction of �nite transduction to automata language can
be described by �nite transducer (trace both the state of the
transducer and the state in the automata for the restriction
language).

Finite transducers are closed under:

Reversion: φ−1 = {〈v , u〉 | 〈u, v〉 ∈ φ} (just replace all labels
x : y with y : x).
Composition: φ ◦ ψ = {〈u, v〉 | ∃w(〈u,w〉 ∈ φ, 〈w , v〉 ∈ ψ)}.
Priority union:

φ ∪p ψ =

{
φ(x), if φ(x) is de�ned,

ψ(x), otherwise.

Applications:

Reversion: switch between analysis/synthesis.
Composition: successive application of operations.
Priority union: separate model for exceptions.
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Finite transducers

Linguistic examples

Finite transducers: linguistic examples

English plural

Describe a transducer that transforms a singular form of English
noun to plural.

torch � torches
monarch+N+Pl � monarchs
ally � allies
play � plays
goose � geese
formula � formulas/formulae
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Finite transducers: linguistic examples

English plural

Describe a transducer that transforms a singular form of English
noun to plural.

Create a separate transducer Texc for exceptions:

g
o : e o : e s e

f o r m u l a ε : s
ε : e

Transducer Tsib that adds -es after word-�nal sibilant (X denotes
any character):

X s, c, x

ch, sh

ε : es
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Finite transducers: linguistic examples

English plural

Describe a transducer that transforms a singular form of English
noun to plural.

Transducer Texc for exceptions.
Transducer Tsib that adds es after word-�nal sibilant.
Transducer TCy that replaces �nal y with -ies after consonant.

X

C y : ies

Ts � transducer that simply appends s.
Texc,sib � transducer that appends s to words ending with -arch
and rejects other words (for monarchs, tetrarchs, . . . ).
Final solution:

Texc ∪p Texc,sib ∪p Tsib ∪p TCy ∪p Ts
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Finite transducers

Linguistic examples

Context replacement

The most common type of transduction � context replacement:

X → Y ||U_V

�Replace X by Y if left context of X is U and right is V .�

In the simplest case X ,Y ,U,V are letters.
Transducer for a→ b||c_d :

q2

q0

q1 q3

c : c

x : x ,
x 6= c

a : b

a : a

b : b
d : d

c : c

d : d

c : c

b : b, a : a

X ,Y ,U,V can be arbitrary regular expressions.
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Finite transducers

Linguistic examples

English plural revisited

Our model for English plural is inadequate linguistically.
Actually, there are no separate endings -es, -ies, -s.

There are only ending -s and phonotactic alterations. How to
model this?
Apply phonotactic rules in cascade.
Rules are formulated with context replacements:

Ts : append !s to the end of the word (! is the placeholder)
ε→ !s ||_$ ($ marks the end of the word).
Tsib: add e before ! and after sibilant ε→ e || (s|z |x |sh|ch)_!.
Ty : replace y by ie before the marker y → ie ||_!.
Texc,sib: do nothing with words ending by arch following non-
empty pre�x (actually an automaton).
Tc : remove the placeholder !→ ε.

Final combination via composition:

Texc ∪p (Ts ◦ (Texc,sib ∪p Tsib) ◦ Ty ◦ Tc )
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Final combination via composition:

Texc ∪p (Ts ◦ (Texc,sib ∪p Tsib) ◦ Ty ◦ Tc )
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Turkish passive

Turkish passive

Construct a �nite transducer, transforming Turkish verb in�nitive to
its passive in�nitive.

Passive is formed by a su�x inserted before �nal -mek/-mak.
Passive su�x: -n after vowel, -In after l and -Il otherwise.
Placeholder I: � after a, �; u after u, o; i after e, i ; �u after �u, �o.

Tmark : insert a marker ! before -mak/-mek : ε→! ||_m(a|e)k$.

Replace the marker by an appropriate su�x:

-n after vowel (TV ): !→ n ||V_$,
-In after l (Tl): !→ In || l_$,
-Il by default (Tdef ): !→ Il ||_,
Combine them all Tsuf = TV ◦ Tl ◦ Tdef .
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Turkish passive in�nitive

Passive is formed by a su�x inserted before �nal -mek/-mak.
Passive su�x: -n after vowel, -In after l and -Il otherwise.
Placeholder I: � after a, �; u after u, o; i after e, i ; �u after �u, �o.

Tmark inserts a marker ! before -mak/-mek.
Tsuf substitutes the marker for an appropriate su�x.
Tfill �lls the placeholder: Tfill = Tı ◦ Tu ◦ Ti ◦ TU , where

Tı checks the condition for ß: A→ ı || (a|ı)C∗_.
Tu for u: A→ u || (u|o)C∗_.
Ti for i : A→ i || (e|i)C∗_.
TU for ü: A→ ü || (ü|ö)C∗_.

Final answer:
Tmark ◦ Tsuf ◦ Tfill
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Nonconcatenative morphology: Yawelmani

stem gerund durative

caw �to cry� caw-inay cawaa-Paa-n
cuum �to destroy� cum-inay cumuu-Paa-n
hoyoo �to name� hoy-inay hoyoo-Paa-n
diiyl �to guard� diyl-inay diyiil-Paa-n
Pilk �to sing� Pilk-inay Piliik-Paa-n
hiwiit �to walk� hiwt-inay hiwiit-Paa-n

Verb forms in Yawelmani (Amerind family)

If the stem was α1V (V )α2(V )(V )α3 where α1, α2∈C , α3∈{C ,ε}:

gerund stem is α1Vα2α3,
and durative stem is α1Vα2VVα3.
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Nonconcatenative morphology: Yawelmani gerund

Gerund stem:

C

a

u

i

e

a:ε

u:ε

i:ε

e:ε

C

C

C

C

C

C

C

C

a:ε

u:ε

i:ε

e:ε

ε

ε

ε

ε

(a|ε) : ε

(u|ε) : ε

(i |ε) : ε

(e|ε)
: ε

C
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Nonconcatenative morphology: Yawelmani durative

Durative stem:

C

a

u

i

e

a:ε

u:ε

i:ε

e:ε

C

C

C

C

C

C

C

C

(a|ε) : a

(u|ε) : u

(i |ε) : i

(e|ε) : e

(a|ε) : a

(u|ε) : u

(i |ε) : i

(e|ε)
: e

C



Computational morphology. Day 2. Finite-state transducers.

Programming �nite automata

FOMA: a �nite-state compiler

FOMA � a program for compiling �nite state transducers.
Designed by Mans Hulden in 2009�2015, last o�cial version
0.9.18 � June 12th, 2015.

Release version: https://code.google.com/archive/p/foma/,
development version https://github.com/mhulden/foma/.
Open source program, written in C++, has Python binding
(only for basic functionality).
Main usage: compile context rules to �nite-state transducers.
Also can be used for processing �nite automata.
Flookup utility permits to use foma transducers as binary programs.

https://code.google.com/archive/p/foma/
https://github.com/mhulden/foma/
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Programming �nite automata

FOMA: basic usage

Basic usage: de�nes a context rule.

foma[0]: ##replace all a by b

foma[0]: regex a -> b || _ ;

374 bytes. 1 state, 3 arcs, Cyclic.

foma[1]: net

Sigma: ? @ a b

Size: 2.

Net: E20E6CF

Flags: deterministic pruned minimized epsilon_free

Arity: 2

Sfs0: <a:b> -> fs0, b -> fs0, @ -> fs0.

foma[1]:
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Programming �nite automata

FOMA: basic usage

Basic usage: de�nes a context rule and applies it up and down
foma[0]: ##replace all a by b

foma[0]: regex a -> b || _ ;

374 bytes. 1 state, 3 arcs, Cyclic.

foma[1]: down

apply down> bcaba

bcbbb

apply down> bbb

bbb

apply down>

foma[1]: up

apply up> aba

???

apply up> cbdb

cada

cadb

cbda

cbdb

apply up> cdc

cdc

apply up>

foma[1]:
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Programming �nite automata

FOMA: basic usage
Forming plural for y -�nal nouns:

foma[0]: ## filter y-ending words
foma[0]: define yFinal ?* y ;
redefined yFinal: 321 bytes. 2 states, 4 arcs, Cyclic.
foma[0]: ## Vowel+y
foma[0]: define Vowel [ a | e | i | o | u ];
redefined Vowel: 413 bytes. 2 states, 5 arcs, 5 paths.
foma[0]: define yVowel [..] -> s || Vowel y _ .#. ; ## simply append s after Vowel+y
redefined yVowel: 872 bytes. 4 states, 25 arcs, Cyclic.
foma[0]: define yVowel [..] -> s || [ .#. | Vowel ] y _ .#. ; ## simply append s after Vowel+y
redefined yVowel: 872 bytes. 4 states, 25 arcs, Cyclic.
foma[0]: define yCons y -> i e s || \Vowel _ .#. ;
redefined yCons: 920 bytes. 6 states, 28 arcs, Cyclic.
foma[0]: ## combine the variants for vowels and consonants
foma[0]: define yChange yFinal .o. yVowel .o. yCons ;
redefined yChange: 936 bytes. 6 states, 29 arcs, Cyclic.
foma[0]: push yChange
936 bytes. 6 states, 29 arcs, Cyclic.
foma[1]: down
apply down> valley
valleys
apply down> ally
allies
apply down> y
ys
apply down> tray
trays
apply down> granny
grannies
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Programming �nite automata

FOMA: operations with automata

Operation Notation

Concatenation of X ,Y XY
Intersection of X ,Y X&Y
Union of X ,Y X |Y
Di�erence of X ,Y X − Y
Iteration of X X ∗

Positive iteration of X X+

Negation of X \X
Context restriction
(X appears only in context Y_Z ) X → Y_Z

Operations with automata in FOMA
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Programming �nite automata

FOMA: operations with automata

Operation Notation

Context replacement X → Y ||U_V
(Change X to Y in context U_V )
Composition of X ,Y X .o.Y
Priority union of X ,Y X .P.Y
Cartesian product of X ,Y X : Y
Domain (upper part) of X X .u
Range (lower part) of X X .l
Inverse transduction of X X .i
Parallel contexts X → Y ||U1_V 1,U2_V 2
Parallel replacement X1→ Y 1,X2→ Y 2||U_V

Operations with transducers in FOMA
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Programming �nite automata

FOMA: applying transducers

Operation Notation

De�ne a transducer variable de�ne 〈var_name〉 〈expression〉
Push de�ned transducer push 〈var_name〉
to the stack
Push expression to the stack regex 〈expression〉
Apply topmost transducer down (apply down)
in stack (downwards)
Apply topmost transducer up (apply up)
�reversely� (upwards)
Clear stack clear

Read lexicon �le read 〈�lename〉 de�ne 〈var_name〉
and save to variable
save transducer(s) save stack 〈�lename〉
to binary �le

Application of transducers in FOMA
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Programming �nite automata

FOMA: external usage and documentation

Documentation page (concise but useful):
https://code.google.com/archive/p/foma/wikis.
Description of available operations: https://code.google.com/archive/
p/foma/wikis/RegularExpressionReference.wiki.

Transducers saved in binary with save stack command can be applied
from command line by �ookup utility.
Main usage:

�ookup -i -x -w 〈binary_�le〉 < 〈input_�le〉 (> 〈output_�le〉)
Applies the transducer in binary �le to each string in 〈input_�le〉
and prints the result (or redirects it to 〈output_�le〉).
If -x key is omitted, input word is also printed on the same string as
corresponding output.
More documentation: https://code.google.com/archive/p/foma/
wikis/FlookupDocumentation.wiki.

https://code.google.com/archive/p/foma/wikis
https://code.google.com/archive/p/foma/wikis/RegularExpressionReference.wiki
https://code.google.com/archive/p/foma/wikis/RegularExpressionReference.wiki
https://code.google.com/archive/p/foma/wikis/FlookupDocumentation.wiki
https://code.google.com/archive/p/foma/wikis/FlookupDocumentation.wiki
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Linguistic examples

English plural
### english.foma ###
read lexc irregular.lexc
de�ne IrregularNounPlural;

de�ne Vowel [ a | i | e | o | u | y ];
de�ne Consonant [ b | c | d | f | g | h | j | k | l | m | n | p | q | r | s | t | v | w | x | z ];
de�ne Letter [Vowel | Consonant];
de�ne Word [ Letter ]+;
de�ne NounMark "+N";
de�ne NounNumber "+Sg" | "+Pl";
de�ne Noun Word NounMark NounNumber;

de�ne NounA�xation "+N" "+Sg" −> "" || _ .#., "+N" "+Pl" −> "!" s || _ .#.;
de�ne Sibilant [ x | s | z | c h | s h ];
de�ne sibException [ Letter ]+ a r c h "!" s ;
de�ne eInsertion [..] −> e || Sibilant _ "!" s .#.;
de�ne checkSibilant [ sibException .P. eInsertion ];
de�ne yReplacement y −> i e || Consonant _ "!" s .#.;
de�ne Cleanup "!" −> "" || _ ;
de�ne RegularNoun [ NounA�xation .o. yReplacement .o. checkSibilant .o. Cleanup ] ;
de�ne Grammar Noun .o. [ IrregularNounPlural .P. RegularNoun ];
push Grammar
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Turkish passive

Turkish passive

Construct a �nite transducer, transforming Turkish verb in�nitive to
its passive in�nitive.

Passive is formed by a su�x inserted before �nal -mek/-mak.
Passive su�x: -n after vowel, -In after l and -Il otherwise.
Placeholder I : � after a, �; u after u, o; i after e, i ; �u after �u, �o.

# symbol classes
de�ne HardStraightVowel a | I ;
de�ne HardRoundVowel o | u ;
de�ne SoftStraightVowel e | i ;
de�ne SoftRoundVowel O | U ;
de�ne HardVowel HardStraightVowel | HardRoundVowel ;
de�ne SoftVowel SoftStraightVowel | SoftRoundVowel ;
de�ne Vowel HardVowel | SoftVowel ;
de�ne Consonant b | c | C | d | f | g | G | h | j | k | l | m | n | p | r | s | S | t | v | y | z ;
de�ne Letter Consonant | Vowel ;
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Turkish passive
# contexts for stem
de�ne LastVowelHard HardVowel Consonant∗ ;
de�ne LastVowelSoft SoftVowel Consonant∗ ;
de�ne LastVowelHardRound HardRoundVowel Consonant∗ ;
de�ne LastVowelHardStraight HardStraightVowel Consonant∗ ;
de�ne LastVowelSoftRound SoftRoundVowel Consonant∗ ;
de�ne LastVowelSoftStraight SoftStraightVowel Consonant∗ ;
# in�nitive vowel check
de�ne Stem Letter∗ Vowel Letter∗ ;
de�ne In�nitiveSu�xInsertion [..] −> E || _ .#. ;
de�ne In�nitiveSu�x [ E −> m a k || HardVowel Consonant∗ _ .#. ] .o. [ E −> m e k || SoftVowel

Consonant∗ _ .#. ] ;
de�ne Su�xTransform Stem .o. In�nitiveSu�xInsertion .o. In�nitiveSu�x ;
de�ne In�nitive Su�xTransform.l ;
de�ne Input In�nitive "+Pass";

# su�x insertion
de�ne MarkerInsertion [..] −> "!" || _ m [ a | e ] k "+Pass" .#. ;
de�ne MarkerAfterVowel "!" −> l || Vowel _ ;
de�ne MarkerAfterL "!" −> A n || l _ ;
de�ne MarkerAfterAll "!" −> A l || _ ;
de�ne MarkerReplacement MarkerAfterVowel .o. MarkerAfterL .o. MarkerAfterAll ;

# combining all
de�ne VowelFill [ A −> I || LastVowelHardStraight _ ] .o. [ A −> e || LastVowelSoftStraight _ ] .o. [

A −> u || LastVowelHardRound _ ].o. [ A −> U || LastVowelSoftRound _ ] ;
de�ne Cleanup "+Pass" −> "" ;
de�ne Grammar Input .o. MarkerInsertion .o. MarkerReplacement .o. VowelFill ;

push Grammar



Computational morphology. Day 2. Finite-state transducers.

Linguistic examples

Yawelmani verb forms

stem gerund durative

caw �to cry� caw-inay cawaa-Paa-n
cuum �to destroy� cum-inay cumuu-Paa-n
hoyoo �to name� hoy-inay hoyoo-Paa-n
diiyl �to guard� diyl-inay diyiil-Paa-n
Pilk �to sing� Pilk-inay Piliik-Paa-n
hiwiit �to walk� hiwt-inay hiwiit-Paa-n

Verb forms in Yawelmani (Amerind family)

If the stem was α1V (V )α2(V )(V )α3, where α1, α2∈C , α3∈{C ,ε}:

gerund stem is α1Vα2α3,
and durative stem is α1Vα2VVα3.



Computational morphology. Day 2. Finite-state transducers.

Linguistic examples

Yawelmani verb forms

We constructed the transducer for Yawelmani verbs manually.
Can we do it with FOMA?

First step: express alternations as context rules.
Gerund: remove all vowels except for the leftmost.
Left context for such vowels: C ∗VC ∗.
Durative:

Remove the second vowel in the �rst syllable (left context Ĉ+V ).
Insert to the second syllable twice the same vowel as in the �rst.

Checking the equality of vowels for durative:

Try to insert all pairs of identical vowels (aa, ee, oo, uu).
Check vowel harmony between syllables by enumerating all variants
of the type C+xC+xC∗ where x is an arbitrary vowel.
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Yawelmani verb forms
### youlumne.foma ###
de�ne Vowel [a | i | o | u];
de�ne Consonant [ c | w | m | h | y | d | l | g | k | t ];
de�ne Letter [Consonant | Vowel];
de�ne Stem Consonant Vowel (Vowel) Consonant (Vowel) (Vowel) (Consonant) ;
de�ne VerbMark "+V";
de�ne Mood "+Ger" "+Dur";
de�ne Mark [ VerbMark Mood ];
# vowel harmony
de�ne VowelPattern [ [Consonant | a]+ | [Consonant | i]+ | [Consonant | o]+ | [Consonant | u]+ ];
de�ne Word Stem & VowelPattern;
# left context for not a leftmost vowel
de�ne LeftContext1 Consonant Vowel [ Letter ]∗ ;
de�ne VowelRemoval Vowel −> [] || LeftContext1 _ ;
# left context for second syllable vowels
de�ne LeftContext2 Consonant Vowel Consonant+ ;
# durative vowel insertion
de�ne DurativeVowelInsertion [..] −> [ a a | i i | o o | u u ] || LeftContext2 _ (Consonant) .#. ;
de�ne GerundSu�xInsertion ["+V" "+Ger"] : [ i n a y ] ;
de�ne DurativeSu�xInsertion ["+V" "+Dur"] : [ g a a n ] ;
de�ne GerundStem Word .o. VowelRemoval ;
# check that word possesses vowel harmony after vowel insertion
de�ne DurativeStem GerundStem .o. DurativeVowelInsertion .o. VowelPattern ;
de�ne Gerund [ GerundStem GerundSu�xInsertion ] ;
de�ne Durative [ DurativeStem DurativeSu�xInsertion ] ;
de�ne Grammar [ Gerund | Durative ] ;
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